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ABSTRACT

In this work our driving motivation is to develop mathematically robust and

computationally efficient algorithms that will help chemists towards their goal of pat-

tern matching. Environmental chemistry today broadly faces difficult computational

and interpretational challenges for vast and ever-increasing data repositories. A driv-

ing factor behind these challenges are little known intricate relationships between

constituent analytes that constitute complex mixtures spanning a range of target and

non-target compounds. While the end of goal of different environment applications are

diverse, computationally speaking, many data interpretation bottlenecks arise from

lack of efficient algorithms and robust mathematical frameworks to identify, cluster

and interpret compound peaks. There is a compelling need for compound-cognizant

quantitative interpretation that accounts for the full informational range of gas chro-

matographic (and mass spectrometric) datasets. Traditional target-oriented analysis

focus only on the dominant compounds of the chemical mixture, and thus are agnostic

of the contribution of unknown non-target analytes. On the other extreme, statistical

methods prevalent in chemometric interpretation ignore compound identity altogether

and consider only the multivariate data statistics, and thus are agnostic of intrinsic

relationships between the well-known target and unknown target analytes. Thus,

both schools of thought (target-based or statistical) in current-day chemical data

analysis and interpretation fall short of quantifying the complex interaction between

major and minor compound peaks in molecular mixtures commonly encountered in
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environmental toxin studies. Such interesting insights would not be revealed via these

standard techniques unless a deeper analysis of these patterns be taken into account

in a quantitative mathematical framework that is at once compound-cognizant and

comprehensive in its coverage of all peaks, major and minor.

This thesis aims to meet this grand challenge using a combination of signal pro-

cessing, pattern recognition and data engineering techniques. We focus on petroleum

biomarker analysis and polychlorinated biphenyl (PCB) congener studies in human

breastmilk as our target applications.

We propose a novel approach to chemical data analytics and interpretation

that bridges the gap between target-cognizant traditional analysis from environmen-

tal chemistry with compound-agnostic computational methods in chemometric data

engineering. Specifically, we propose computational methods for target-cognizant

data analytics that also account for local unknown analytes allied to the established

target peaks. The key intuition behind our methods are based on the underlying to-

pography of the gas chromatigraphic landscape, and we extend recent peak mapping

methods as well as propose novel peak clustering and peak neighborhood allocation

methods to achieve our data analytic aims. Data-driven results based on a multitude

of environmental applications are presented.
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PUBLIC ABSTRACT

Most laboratory petroleum data contain significant overlap with regional fin-

gerprints that mislead forensic apportioning of the environmental impact of major

oil spills (e.g. the British Petroleum spill, Gulf of Mexico, April 2010). We develop

methods to better distinguish between highly correlated petroleum sources that share

unknown regional fingerprints along with their source-specific unique signatures. We

also devise compression techniques that harness source-sensitive pattern recognition

to drastically reduce the volume of gas chromatographic datasets, leading to efficient

storage, indexing and querying of vast data repositories across environmental and

petroleum laboratories.
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CHAPTER 1
INTRODUCTION

1.1 Problem Statement

Forensic distinction among the oil sources can be of paramount importance

in apportioning the environmental impact of major oil spills such as the Deepwater

Horizon disaster in the Gulf of Mexico (April 20, 2010) and the Refugio oil spill,

California (May 19, 2015). The problem of oil source fingerprinting and identification

has been well-studied and many experimental methods have been used to determine

the petroleum fingerprint of different areas( [1–7]). The current state-of-the-art in

petroleum forensics typically employs one-dimensional gas chromatography combined

with mass spectrometry (GC-MS) as well as two-dimensional gas chromatography

(GC × GC) as the separation technology, followed by peak-ratio analysis on target

biomarkers ( [8–11]). However, despite the success of target-driven analysis in exist-

ing art [12] key challenges remain when comparing crude oil from closely correlated

sources, e.g. neighboring oil reservoirs in a petroleum-rich locale.

These challenges are discussed in depth in Section 1.2.4 and as such, are not

limited to petroleum forensics alone. A broad range of applications in environmen-

tal chemistry, e.g. air quality monitoring and toxins ingested by newborns through

breastmilk, face similar interpretational issues. The end goal in these environmen-

tal applications is generating a robust quantitative framework for comparing field

samples that connect the role of unknown non-target analytes measured in the raw
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instrument signal with labeled target analytes that are routinely identified in com-

plex mixtures. Beyond statistical robustness of field samples against instrumental

variability, the interpretation framework also needs to exhibit relative immunity to

training biases when supervised methods [13] are used. Robust prior knowledge of the

source (e.g. an oil reservoir) extracted from the experimental analyses in the chemical

lab can be expensive to derive and reproduce in terms of instrument and personnel

time. Target-based source differentiation also fails popular correlation tests (e.g. [14])

when a reference sample from a known source is compared against a closely correlated

but unknown sample that may be from a neighboring source without an established

fingerprint. Therefore, there is a compelling need to analyze environmental datasets,

e.g. GC ×GC images of pre and post-spill crude oil samples, through algorithmical

methods that are not only target-cognizant but also driven by the nuances of unknown

non-target analytes that span the complete dataset.

Beyond the compelling motivation from environmental chemistry, there is cur-

rently considerable enthusiasm around the study and analysis of ”large data-sets”.

Large data-sets are popularly referred to as ”Big Data” where the dimensionality

of the data-set is intractably large. In the context of environmental chemistry, this

can mean hundreds of thousands, if not millions of compound peaks that need to

be accessed, compared, and indexed across the whole data repository. A vast and

growing literature in data processing, knowledge extraction and data mining have

been proposed to manage, interpret and classify the high volume of data being pro-

duced at a rapid pace daily. High-volume data analytic techniques include but are
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not limited to numerous (i) data indexing and clustering methods [15], (ii) data com-

pression schemes ( [16], [17], [18]) and (iii) pattern recognition [19] and related signal

processing techniques.

This thesis seeks to combine techniques from these related data engineering

fields and propose novel solutions to chemometric data interpretation. The research

objectives combine empirical data analytics as well as mathematical constructs which

are summarized as three related thrusts:

(i) Discover underlying patterns within gas chromatographic datasets, with par-

ticular emphasis on petroleum biomarkers (hopanes and steranes) and poly-

chlorobiphenyl (PCB) compounds found in air quality monitoring and human

breastmilk;

(ii) Enable compact data representation schemes that enable reconstruction of rel-

evant information;

(iii) Develop analyte-cognizant data indexing and querying techniques for high-

volume chromatographic datasets.

1.1.1 Quantitative Source Differentiation in Chemical Forensics

Suppose we have a library of GC×GC images saving the GC×GC information

of different geographical regions of the world. Suppose, the size of our library is large

enough to have at least one sample from any geographical region. Our problem is

to estimate the geographical region of a newly-extracted unknown test image based

upon the information in the library. We perform the task, by comparing the test
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image with each of the elements of the library and declare the one with the highest

percentage of match to the test image as the potential sample with the same region.

Therefore, we should try to come up with a valid similarity criterion to compare the

images.

1.2 Background Motivation

1.2.1 Review of Analytical Hardware

Gas Chromatography(GC) is the process in which a chemical mixture is sepa-

rated into its underlying chemical elements or compounds. Figure 1.1 shows the gas

chromatography system components. Gas chromatography consists of two phases,

the mobile phase and the stationary phase. The mobile phase is a gas carrier(usually

helium or nitrogen) that carries the injection(entered at Injector) through the system.

The stationary phase is a layer of liquid inside a glass called column. The compounds

interact with the walls of the column differently according to their chemical prop-

erties, the boiling points, the polarity and the temperature of the oven. Then they

are eluted and sensed by the detector at different times called their retention time.

Different compounds are sensed at different retention times and the detector records

these compounds as peaks. The thermostatic oven is set so that the temperature of

the gas will be controlled for a precise work of separation.

Figure 1.2 shows the signal recorded by the detector in the system. Two-

dimensional gas chromatography(GC × GC) is this process while being done in two

steps, in order to well-separate the elements from each other. In the first stage, the
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Figure 1.1: Gas Chromatography system.

chemical elements are separated and then sensed at the output of the first step, and

they produce the corresponding peaks at different retention times (first dimension).

Then these elements go through the second stage and are separated in another stage

which leads to the second dimension of the retention time. So the final signal is a 3-

dimensional image, where the first and the second stages correspond to the retention

times and the third dimension is the amplitude of the corresponding peak for each

element at the corresponding retention times(Figure 1.3).

Figure 1.3 shows the two-dimensional chromatography instrument and the

final resulting signal.

Note that the time for the first stage is far more than the time for the second
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Figure 1.2: one-dimensional GC image.

Figure 1.3: 2-dimensional GC×GC image. This image has been provided by Robert

Nelson and Woods Hole Oceanography Institution.
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stage, because the main separation is done in the first stage, while the second stage

has the role of separation for those not separated well in the first stage.

1.2.2 Interdisciplinary Challenges Addressed in Proposed Research

In this work a compound analysis of the GC×GC images have been taken into

consideration while any minor variations and compounds carry important information

about the forensic property of the petroleum source. The current state of the art

methods is divided into two general areas:

• Separating Technology for analyzing complex molecular mixtures(Compound

Analysis): Analysis of the image based on the variations and target and non-

target peak of the image. This method is effective once the little differences

among different forensic sources should be captured. Section 1.2.1 reviews the

analytical hardware of gas chromatographic setups.

• Infometric methods for interpreting GC image(Chemometric method): This

method is based on the statistical property of the image. In this method an

overall analysis is done through-out the image while many minor variations of

the image is either ignored or averaged. Section 1.3.2 discusses chemometric

state-of-the-art in detail.

Table 1.1 shows the comparison between the target-compound analysis of the GC ×

GC images and the commonly used chemometric methods. The complete description

on difference between the two broad methods is comprehensively explained in chapter

5.
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Table 1.1: Comparison between Target-Compound Analysis and Chemometric meth-

ods

Compound Analysis Chemometric methods

Compounds with chemical meaning Points have no underlying meaning

Main targets play the important role Analysis is based on both main and minor analytes

The effect of non-targets are ignored Comprehensive large-scale analysis

Highly sensitive to drift in retention time Robust to retention time

Reliable source diagnosis, based on peaks Requires many training data-sets

1.2.3 Peaks in the GC ×GC image

Any GC×GC image is composed of couple of classes of biomarkers,say hopane

and sterane biomarkers. Any biomarker of the image itself is composed of couple of

target analytes which are analyzed by the chemists in order to identify the corre-

sponding petroleum source. They are some peaks within the image which are not

targets referred to as non-target analytes. These non-target analytes could carry sig-

nificant information about the forensic source. Figure 1.4 shows one biomarker and

its corresponding targets and non-target analytes. The main contribution of this work

is to avail both the target and non-target analytes in order to have a better scheme

to separate and identify the forensic source.
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Figure 1.4: Visual illustration, target and non-target analytes within hopanes and

strains GC × GC image. The target analytes dominate the biomarker topography

and some of the non-target analytes are gathered around the target analytes.

1.2.4 Challenges in chemical data interpretation with focus on the GC ×GC image

There are several challenges that underlie the analysis of the GC ×GC image:

• Retention Time variability

The GC×GC system is a non-ideal system, it means that a peak experiences a

drift from its actual point. If a peak should arrive at the output of the second

stage at (r1, r2), it will arrive at (r1 + δ1, r2 + δ2), where it is assumed |δ| ≤ ∆,
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where ∆ is the maximum variations of the peaks. Furthermore, the system is

non-uniformly non-ideal, it means it may drift one peak with δ and drift the

other by δ
′
(δ
′ 6= δ).

• Peak Baseline

Aside from the drift, the peaks of the signal, which corresponds to chemical

constituents in the sample, rise above a background level in the output. In other

words, the peaks ride on a baseline bias, that changes the actual amplitudes

of the peaks. This bias signal in GC technology is often called column bleed

which is affected by some factors such as the temperature of the oven of the

column. Several methods have been proposed as baseline correction schemes in

the literature ( [20–22]), which are based on either correction near any single

peak or along the whole image. Of particular interest is the tophat filtering [23]

used in chapter 2 as the baseline correction scheme. Tophat filtering is widely

used in the image processing as a way to extract small elements and details

from any given image. In GC × GC images, the small details are the small

variations or the non-target analytes near the target analytes.

1.3 Cluster behaviour of GC ×GC image

In any GC × GC image, there are some main target analytes and significant

numbers of non-target analytes. The targets are indeed the representative of the

corresponding oil sample, where these targets gather many non-target peaks around

them. Figure 1.5 shows the clustering behaviour of the GC × GC image where any
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target peaks have been surrounded by non-target points. Remember that in the

GC × GC image, the retention time in which a peak is located is determined by its

molecular mass. So, if two peaks are near to each other they probably share similar

properties, e.g. they may be isomers. With this in mind, considering the points near

to each other as one cluster may be a good idea to extract the forensic information

locally in each cluster. We have availed this property of the GC×GC image in chapter

3 and then performed the pattern matching analysis on the clustered data-set.

Figure 1.5: Clusters in GC ×GC image.
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1.3.1 Computational methods related to chemical fingerprinting

The end goal of chemical fingerprinting is to compare the chromatographic

image of an unknown sample against a reference sample, e.g. a standard NIST sample

from the region or a reference sample kept in laboratory repositories (library). To

enable fair comparison between the samples, several computation steps need to be

observed. The general approach introduced in the literature is:

• Correct the baseline in the images.

• Detect the targets and/or non-targets in each image.

• Map the targets and/or the non-targets from the reference image to those of

the test image. These target or non-target points are the comparison units.

• Apply comparison metric between the corresponding comparison units in the

reference and test image.

We perform the steps mentioned above for any of the to-be-tested samples

against one reference sample in the library, then map those with the highest percent-

age of match to the reference sample in the library. In the next step we change the

reference sample and extract the samples with the highest percentage of match to the

new reference sample and then map these samples to the new reference sample.

For each of the steps several methods have been proposed in the literature.

Reichenbach et al. [20] described a method for extracting the GC×GC baseline com-

prehensively. In this method a statistical method is built by tracking neighborhoods



www.manaraa.com

13

around the smallest values as a function of time and the noise and then subtracts the

background model from the data.

Detecting the peaks and mapping the corresponding peaks can be addressed

as the problem of curve matching for each column of the GC × GC image. Because

of the drift (variability) and baseline, the curves of the image are deviated, we may

consider that the deviated curve is the transformed version of the actual curve. In

this case by an inverse transform we may recover the original curve. In [24] affine

transform has been proposed as a way for matching the curves. But because the

GC ×GC system is non-uniformly non-ideal, the transformation should be done for

every peak of the image, which requires a lot of computational complexity, then by

extracting the statistics of the parameters of affine transform and assigning a density

function, the parameters are chosen from the constructed density function. But it is

highly computationally complex, and the assumption of a linear transform may not

be necessary true.

Generally, in order to have a comparison between two GC × GC images, we

may first try to remove the background baseline of the image, detect the peaks or

the targets and non-target analytes carrying the information about the image and

then have a point to point comparison between the two images. In this comparison,

we may define a similarity metric between the two images to test the match. Also

the prior knowledge of the clusters within the GC × GC images could help us to

introduce the target-cognizant clustering concept and look at the points occurring at

each cluster.
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1.3.2 Chemometric methods

Chemometric methods refer to sophisticated statistical techniques ( [25] , [26])

applied to chemical data analytics and interpretation. The chemometric methods

offered in the literature, cross-correlation, Principle Component Analysis (PCA) [14],

Robust PCA [27], PARAFAC [28] , PARAFAC2 [29] , Independent Component Anal-

ysis (ICA) [30], WFA [31] and ITTFA [32] have been proposed in order to analyze the

forensic properties, while these methods ignore the importance of the minor variations

and little peaks of the GC × GC image. The minor variations is a key to identify

the petroleum sources from the areas located closely to each other but from distinct

sources. Chromatographic and spectroscopic signal processing techniques also fall

under the realm of chemometric methodologies and are discussed in [33] and refer-

ences within. In synopsis these methods include signal smoothing, signal de-noising,

curve-fitting schemes, peak finding algorithms, resolution enhancement , convolution

and de-convolution and other schemes commonly used in signal processing have been

indicated as tools for signal analysis. Applying these methods on the chemical sig-

nal renders it ready for final analysis, where analysis usually is done for the purpose

of recognizing the underlying constructive elements and thus expose hidden patterns

within the chemical signal.

1.3.3 Principle Component Analysis

We provide a detailed synopsis of Principle Component Analysis (PCA) due

to its prominence in the current state-of-the-art in chemometric analysis. PCA trans-
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form uses orthogonal transformation to separate potentially correlated data points

into linearly independent variables called principle components. This transformation

performs such that the first principle component has the largest possible variance,

and then the following principle component is constructed to be orthogonal to the

previous principal component and along the direction of highest variance of the re-

maining data set. Mathematically speaking, suppose we have a m-dimensional feature

space data-set X and we want to project it to a n-dimensional feature space data-set

(n ≤ m). We want to project the data-set into line ~W going through the origin. The

goal is to project into the vector ~W in order to have the maximum variance along it,

suppose W (1) refers to the first principle component of the dataset X, then by the

definition of variance we will have:

var(W (1)TX) = E(W (1)TXXTW (1))− E(W (1)TX)E(XTW (1)) (1.1)

= W (1)TE(XXT )W (1) − E(W (1)TX)E(XTW (1)) (1.2)

= W (1)T (E(XXT )− E(X)E(XT ))W (1) (1.3)

= W (1)TCXW
(1) (1.4)

Where CX is the covariance matrix of the dataset X. We want to maximize the

var(W (1)TX) under the constraints that W (1)TW (1) = 1. We construct the La-

grangian function and then calculate the optimal value for W (1). Taking v(w) =

var(W (1)TX) under the constraint that w(w) = W (1)TW (1) − 1 = 0, we will have:
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L(λ,W (1)) = v(w)− λ(W (1)TW (1) − 1) (1.5)

Where the λ is the Lagrangian multiplier.

Then by taking derivative with respect to w we will have:

∂L

∂W (1)
=

∂v

∂W (1)
− λ ∂w

∂W (1)
(1.6)

From 1.5 we have: L(λ,W (1)) = v(w) − λ(W (1)TW (1) − 1) = W (1)TW (1) −

λ(W (1)TCXW
(1) − 1), then we will have:

∂u

∂W (1)
= 2CXW

(1) − 2λW (1)λ (1.7)

which leads to

CXW
(1) = λW (1) (1.8)

or in another word the desired W (1) is the eigen-vector of Cx. The second principle

components is calculated in the same way in which W (2) refers to the second largest

eigenvalue of CX and the same holds for the remaining principle components.

1.4 Existing Data Engineering Methods

In previous sections, we have provided a synopsis of existing signal process-

ing and statistical methods related to chemical fingerprinting. However, a literature

review of chemical forensics and associated data analytics is incomplete without a

general review of data engineering methods. Given the data deluge in environmental
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data libraries, we review the data engineering literature in three related categories:

(i) Data compression, (ii) Pattern recognition and (iii) High-volume Data Querying

and Indexing methods.

1.4.1 Data Compression

A vast literature exists in data compression techniques that exploit underlying

patterns of the dataset or transform data to achieve compact (feature) representations

and hence dimensionality reduction across high-volume datasets. Realizing the un-

derlying patterns within chromatographic data helps to extract the most information-

bearing part of the data, e.g. petroleum sample repositories may be compactly or-

ganized by extracting hydrocarbon biomarkers clusters relevant to the fingerprint of

a petroleum source fingerprint. Broadly speaking, large dimensional data-sets are

analyzed in two complementary ways: (i) through the analysis of the underlying dis-

tribution of the elements of the data-set, or (ii) estimating its distribution in case

the distribution is not known( [34, 35]). The emphasis of this thesis is more on the

latter class of data analytical and compression techniques due to general dearth of

knowledge of the underlying distribution of target and non-target analytes that make

up the chromatographic signals.

Compression techniques such as principal component analysis (PCA) exploit

principle components of data-sets to compress the data along its salient features

( [36–38]) and as such, define the state-of-the-art in chemometric methods. Such

compression along the principal feature spaces also serve as a mathematical framework
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for fast data indexing and querying [Section 1.4.3]. A detailed discussion of PCA is

given in Section 1.3.3.

Dimensionality reduction can also be posed as a machine learning problem

where established supervised learning methods are employed to extract the most im-

portant data features (refer e.g. [39,40]) and threshold the others. This feature reduc-

tion ( [41–43]) can be done through diverse methods ranging from simple thresholding

, different quantization techniques ( [44, 45]) to more sophisticated methods that ex-

ploit the internal correlation between data elements and map the whole data-set to

its main components. Compact representation of any data-set and image has been

offered through some popular techniques such as Karhunen-Loeve Transform( [46]),

Discrete Cosine Transform [17], Discrete Wavelet Transform [16] .etc.

1.4.2 Pattern Recognition

Pattern recognition schemes help the analytical chemists to find the underlying

features and elements of the chemical observation which may not be easily seen just

by measurement. As long as there exists a library of data-set of different chemical

samples, pattern recognition helps to map a new sample to one of the entries of the

library. Of main importance of the pattern recognition scheme is its capability of

feature extraction where a subset of the data needed to have an accurate mapping.

Hence, pattern recognition serves the chemist with the reduction of the data they

need for the chemical analysis. Mapping a sample to one of the members of the

library requires some sort of similarity between the tested sample and the entries
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of the library. In [47] and [48] the similarity has been defined as the parameter of

closeness, where a simple Euclidean distance serves as a similarity parameter. In case

the points of the chemical sample is d-dimensional, then any dimension of the point

can be considered as the similarity or dissimilarity factor individually [47].

1.4.3 Data Indexing and High-volume Data Query

Figure 1.6: Block Diagram to classify the test image and map it to one of the entries

in the library. Chemists use target biomarkers to interpret each GC × GC image,

we attempt to classify the petroleum sources based upon their target and non-target

analytes or clusters of targets.

Data Mining [15] can be interpreted as the process of turning the raw data

into information. This information is then used for the purpose of further predic-
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tion. The major task of data-mining has been addressed as six broad sub-areas [49]

as class description, association, classification, clustering, time-series analysis and

prediction. The class description governs the characteristics of the data. Any un-

derlying correlation and inter-element relationship is analyzed through association

method. Clustering helps to group the similar data-points of the given data-set for

the purpose of classification. The prediction is done in order to find the class of a

future under-test data-point and the time-series analysis is an effort to find successive

measurements the sequential patterns. In this work we focus on the clustering and

classification properties of data mining.

In Figure 1.6 the general approach for mining the forensic sources and then

classifying them based upon their similarities to one member of the library is shown.

First, from the reference image we learn biomarkers, cluster of biomarkers or the

pixels within a neighborhood around the target of the image. Once a new test image

is received, we extract the maximum possible features out of it and then compare its

features against the features of the reference image. The features can be the center

of masses of the clusters (will be covered in detail in chapter 2), or the peaks of the

image or the pixels. We will further propose a comparing function in chapter 3 in

order to compare the features of the test and reference image.

1.5 New Approach in Environmental Data Query and Indexing

Query in the environmental forensic sources have been done through the anal-

ysis of the biomarkers within their image. The target analytes are the analytes that
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Figure 1.7: The figure is a two-dimensional GC × GC image regarding to one

petroleum source from the Macondo area. The targets are a sub-set of the peaks

in biomarker classes in the image. The characteristics of the petroleum source is

carried by the targets.

the chemists look for them in order to distinguish the forensic sources. In a higher

resolution scale we look at the both the target and the non-target analytes to well

separate the forensic source. So query and indexing the forensic sources can be done

in biomarker analysis level, target level and in a very high resolution level which

is the target and non-target analysis and then index the forensic source based on

these analytes. Indexing the forensic source based on targets and non-targets can be

considered as one of the main contributions of this work.
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1.6 Synopsis of Proposed Research

The organization of this thesis is as follows.

Chapter 2 discusses the similarity criterion for the recognition and compar-

ison of chemical images and introduces a method to remove the baseline regarding

the images. Chapter 3 discusses in detail the main algorithmic innovations in this

thesis, which combines target cognizant clustering (TCC) methods [50], with local

interpretation over the raw signal using Target Neighborhood Analyzer (TNA). PTM

provides target cognizant interpretation as it retains peak information, TCC looks at

the center of masses of the clusters of the targets, and the TNA method a target-

centric method where neighborhoods within a definite radius of the main targets are

seen. A combination of TCC and TNA method which has been addressed in the

proposed work as another way of looking at the chemical images in which avail the

benefits of both methods, TCC and TNA. These methods represent a target cog-

nizant clustering, compression, indexing and querying of high volume data-set such

as GC×GC, and GC−MS data-sets. Of particular interest, we have adopted linkage

clustering scheme [51].

The proposed methods in Chapter 3 are focused on data compression where

clustering may reduce the dimensionality of the data-set considerably. However, as

detailed in Chapter 4, these methods may also be employed to achieve efficient target-

cognizant data mining over high-volume environmental datasets. In chapter 4, we

increase the analysis resolution and try to find a way to analyze the chemical images

based upon individual elements or peaks. In chapter 5, we try to combine the already-
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existent data compression methods like SAX and design a systematic method to go

towards the pattern recognition goal. Finally, in chapter 6, we try to go deeply

through the comprehensive study of the peaks topography map, a detailed method of

chemical pattern recognition. We also introduce the notion of robust peaks in which

the analysis of the chemical images can be done via these peaks and not the others,

mainly because these peaks exist in all of the images extracted from one specific

geographical region.

In summary, we propose a novel approach to chemical data analytics and in-

terpretation that bridges the gap between target-cognizant traditional analysis from

environmental chemistry with compound-agnostic computational methods in chemo-

metric data engineering. Specifically, we propose computational methods for target-

cognizant data analytics that also account for local unknown analytes allied to the

established target peaks. The key intuition behind our methods are based on the

underlying topography of the gas chromatographic landscape, and we extend recent

peak mapping methods as well as propose novel peak clustering and peak neighbor-

hood allocation methods to achieve our data analytic aims.
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CHAPTER 2
TARGET COGNIZANT CLUSTERING AND INTERPRETING
LOCAL NEIGHBORHOODS IN GAS CHROMATOGRAPHIC

IMAGES

2.1 Introduction

In this chapter we study clustering behaviour among target and non-target

analytes within gas chromatographic datasets, with special emphasis on GC × GC

topography of petroleum biomarkers. As discussed in Section 1.3, the well-known

target analytes of the GC ×GC image dominate the topography but also cohabitate

the chromatographic landscape with a larger group of unknown non-target analytes.

In this chapter, we wish to study in particular, among target and non-target ana-

lytes as they may be indicators of a common factor, e.g. a region-specific fingerprint,

co-indicative PCB congeners, ec. As also discussed in Chapter 1, the time in which

a peak arrives at the end of the GC × GC system relates directly to the chemical

properties of the corresponding chemical compound. With this in mind, peaks oc-

curring near to each other may represent similar classes of compounds and therefore,

may exhibit group behavior regarding their source of origin, impact on public health,

environmental dependencies and other important factors.

2.2 Data Compression Challenges Unique to Environmental Forensics

We explore data compression as a grand challenge at the intersection of high-

volume data analytics and human-environment interactions, with petroleum forensics

as a relevant and exemplary field application. Our goal is to meet the growing practi-
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cal necessity for reliable high-rate compression of environmental data-sets in a manner

that yields robust yet compact forensic interpretation. To achieve this end, we derive

compression techniques that are:

• compound-cognizant, thus preserving well-known forensic markers

• statistically robust, i.e., employs the full informative power of rich intricate

datasets.

A practical example where such compression products are of critical need are coastal

surveillance vessels that sample industrial spills and leaks. These surveillance missions

are challenged with legal mandates to test for well-known labeled analytes and against

closely related sources, and yet have no real-time access to large data libraries to en-

sure robust forensic match (or lack thereof). Furthermore, most data compression

and chemometric techniques that provide fast indexing and querying of large envi-

ronmental databases are, by design, agnostic of target analytes, which are labeled

compounds (forensic markers) that dominate the data topography across diverse sep-

aration technologies, e.g. gas and liquid chromatography (GC, GC - GC, LC, LC-LC),

mass spectrometry, and combinations thereof (GC-MS, GC-LC/MS, etc.). Our goal

in this proposed work is two-fold: (i) Bridge the duality in environmental foren-

sics literature between target-cognizant forensic chemistry and compound agnostic

chemometrics; and (ii) Address the competing challenges of high-volume data inter-

pretation and target-cognizant forensics from a compression perspective. Specifically,

our intellectual contributions are summarized as follows: (i) We develop target-driven



www.manaraa.com

26

local features that compresses high-volume environmental datasets along compound-

cognizant clusters. An important benefit of this target-driven compression allows fast

indexing and querying of high-volume data for a single biomarker class (e.g. hopanes,

steranes, diasteranes) without needing to interpret the full data archive in a field

test. (ii) We enable fast and potentially real-time forensic interpretation that can

match an unknown sample against arbitrarily high-dimensional datasets, compressed

along target-cognizant clusters. We achieve this by local interpretation of biomarker

topography, across target and non-target peaks within the target’s neighborhood.

2.3 Technical Approach

Our technical approach in this chapter may be summarized as two complemen-

tary algorithms: (i) Target-Cognizant Clustering algorithm, detailed in Section 2.3.1,

and (ii) Target Neighborhood Analysis, detailed in Section 2.3.2. Our proposed ap-

proach has been detailed with two-dimensional gas chromatography (GC ×GC), but

is easily extensible to other forms of environmental data that exhibit high-dimensional

peak profiles (e.g. LC-LC, GC-MS, and others).

2.3.1 Target-cognizant Clustering

We introduce a target-cognizant compression technique that drastically re-

duces data dimensionality by clustering the data into primary target neighborhoods.

The key idea is to cluster the information inherent in a GC × GC dataset along

forensic markers, hopanes and steranes, which manifest as the dominant peaks in the

biomarker topography. We algorithmically detect the primary targets within a given
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GC × GC image I by employing peak-thresholding with a threshold τ . Mathemati-

cally, we construct the sub-image I
′

such that:

I
′
= I(I ≥ τ)

Figure 2.1: GC × GC separation of petroleum biomarkers (hopanes and steranes)

for a pre-spill crude oil sample taken from the Macondo well, site of the Deepwater

Horizon disaster in the Gulf of Mexico, April 2010. Target biomarkers are labeled

numerically.



www.manaraa.com

28

Figure 2.2: GC × GC image in Figure 1.5 split into two main clusters using single-

linkage clustering. The chosen clusters roughly correspond to two categories of

biomarkers, hopanes and steranes.

We note that this step may be replaced by manual labeling in the event that

some targets may fall below the assigned peak threshold τ . However, for practi-

cal datasets, simple thresholding isolates a majority of well-known targets though it

leaves out most non-targets crucial to robust forensic interpretation. We then employ

single-linkage clustering [13] over the selected targets to discover target classes that

group together in potentially overlapping neighborhoods. Our intuition is that target

biomakers that share Euclidean proximity within the GC × GC topography likely

share chemical inter-relationships (e.g. isomer groups) and thus designing feature

compression based on target clusters will derive precise forensic information from a

drastically reduced dataset. Figure 2.2 shows the two main clusters for Figure 2.1,
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which as expected, fall along two primary classes of compounds, hopanes and ster-

anes. Generally speaking,N clusters separated using single-linkage clustering based

on the target biomakers folds the GC ×GC topography into N sub-classes of target

and non-target analytes, each of which are anchored to a specific target neighborhood.

Mathematically, we may break up the GC × GC image I as a disjoint union of N

target clusters.

I = ∪Nn=1In (2.1)

where In denotes the nth cluster of target analytes, representing a local neigh-

borhood for unique forensic interpretation. We note that Equation 2.1 also provides

the basis for compression of a large GC ×GC image into neighborhoods anchored to

{In}Nn=1 and local interpretation and querying is pivoted to individual neighborhoods

(Section 2.3.2 for details). Specifically, we achieve a compression rate of Cn given by

the ratio of pixels in I to the ratio of pixels in each target cluster In, i.e.

Cn =
|I|
|In|

(2.2)

where | · | denotes number of pixels within the given image.

A related question that naturally arises is: How to robustly compare between

target clusters? Accordingly, we define the ∆(Ij, Ik), the distance between the cen-

ter of mass of the two clusters, as the geometric metric to facilitate inter-cluster

comparisons. Mathematically, ∆(Ij, Ik) is given as:

∆(Ij, Ik) = ||cj − ck||22, (2.3)
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where cj and ck are the centers of mass of the clusters1 of Ij and Ik respec-

tively. For forensic analysis, we may use ∆(·) as the distance metric to match two

samples over the same target cluster, and thus provide robust local interpretation.

Our goals for local forensic interpretation are to meet the complimentary needs of

target cognizance and high precision over highly compressed datasets. Specifically we

pursue target-anchored forensic matching for an unknown field sample against large

data archives that are compressed along the {In}Nn=1 clusters. Figure 2.4 in Section 2.4

provides field data-driven results for the effectiveness of this method, both in terms

of compression ratio and forensic precision. Pseudo-code for the target-cognizant

clustering is given below.

1The center of mass of a cluster is given by:

gcmj =

∑m
i=1 hi,j .li,j∑m
i=1 hi,j

, j ∈ 1, 2, 3, ..., N (2.4)

where N is the number of clusters, m is the number of points within a cluster, and hi and
li are the amplitude and the location of the i-th point in that cluster, respectively.
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Algorithm 2.1 Target-Cognizant Clustering (TCC)

� Input:

∗ Reference Image Iref .

∗ Test Image Itest.

∗ N (number of clusters).

∗ τ (threshold).

� Output:

∗ Difference between the two input images

� Step0:

∗ Apply a peak threshold on the reference image: I
′

ref = Iref (Iref ≥ τ).

� Step1:

∗ Map the thresholded reference image into couple of clusters using single linkage

clustering: I
′

ref =
⋃N
k=1 I

′k
ref .

� Step2:

∗ Construct the clusters in the test image Itest at locations given by the clusters of

Iref (Look at Figure 2.3).

� Step3:

∗ Compute the center of mass of each cluster using Equation 2.4 in both Iref and

Itest.

� Step4:

∗ Calculate the Euclidean distance of center of masses of clusters as dissimilarity

criterion (Implement equation 2.3):

Dissimilarity Score =
∑N

i=1 ∆(I iref , I
i
test),

∗ return Dissimilarity Score.
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Figure 2.3: The top left figure shows the original reference image. First, the image

is thresholded so that the clusters of the image are well-separated. After applying

single-linkage clustering, the boundaries of the clusters are determined. In order to

compare a new test image with reference image, TCC algorithm just looks at the

location of clusters computed in the thresholded reference image and then maps the

clusters to the center of mass. The red boxes show the center of masses of clusters.
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2.3.2 Target Neighborhood Analyzer (TNA)

Despite representational simplicity of target-cognizant clustering, the high

compression rate is achieved at a cost of information loss. This information loss

is fundamentally due to completely ignoring the statistical significance of non-target

analytes that constitute the majority of GC×GC topography. Therefore, forensic in-

terpretation derived purely based on target-driven clustering inevitably suffers from

high false alarm rates when comparing between closely correlated contaminant sources

that share similar proportions of target biomarkers. To remedy the loss of non-target

information, we augment target-based clustering with feature encoding along the local

neighborhood of each target peak. The goal in this augmented clustering technique

is to aid statistically robust indexing, querying and cross-sample comparisons albeit

at a slightly higher compression rate. We also include traditional peak-ratio compar-

isons within each feature neighborhood to facilitate comparisons against the current

state-of-the-art in environmental forensics.

Mathematically speaking, we construct the r-neighborhood around each cho-

sen target Ti such that Ti ∈ In, where In is one of the target clusters chosen using

target-cognizant clustering. Thus, the sub-image Ĩ(r, n) considered for forensic in-

terpretation will be given by the sub-set of the GC ×GC image I that contains the

nth target cluster as well as the local topography around it within a neighborhood of

radius r centered on the target peak. The compression ratio Cn for the nth cluster is

now given by:
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Cn =
|I|

|Ĩ(r, n)|
, (2.5)

where | · | denotes the number of pixels within the given image. The overall

compression ratio is given by:

Cn =
|I|

| ∪Nn=1 Ĩ(r, n)|
, (2.6)

where N is the total number of clusters obtained from target-cognizant cluster-

ing. To compare between two samples with GC×GC images I(1) and I(2), we proceed

as follows:

1. Step 1: For each cluster n, consider the sub-images {I(m)
n }2

m=1. For each pixel

location (r1, , r2) ∈ ∩2
m=1I

(m), determine the peak-ratio

ρ({I(m)
n }2

m=1, r1, r2) = max

(
I

(1)
n (r1, r2)

I
(2)
n (r1, r2)

,
I

(2)
n (r1, r2)

I
(1)
n (r1, r2)

)
, (2.7)

where {I(m)
n (r1, r2)}2

m=1 are the pixel intensities at the location (r1, r2) for both

sub-images {I(m)
n }2

m=1.

2. Step 2: Calculate the similarity factor S(I
(1)
n , I

(2)
n ) as the forensic match metric

of I
(1)
n with respect to I

(2)
n given as:

S(I(1)
n , I(2)

n ) =

∑
(r1,r2):ρ({I(m)

n }2m=1,r1,r2)≥ρτ
I

(1)
n (r1, r2)∑

(r1,r2) I
(1)
n (r1, r2)

, where (r1, r2) ∈ ∩2
m=1I

(m)
n ,

(2.8)

where ρτ is the tolerance threshold.
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S(I
(1)
n , I

(2)
n ) = 1 denotes perfect match between (I

(1)
n and I

(2)
n . It is easy to ver-

ify that S(·) is commutative, i.e., S(I
(1)
n , I

(2)
n ) = S(I

(2)
n , I

(1)
n ) since we only consider

(r1, r2) ∈ ∩2
m=1I

(m)
n and ρ({I(m)

n }2
m=1, r1, r2) is commutative by design. It is also easy

to verify that the number of pixels ∈ ∩2
m=1I

(m)
n considered to calculate S(·), denoted as

κ(I
(1)
n , I

(2)
n ), is upper-bounded by the total number of pixels for the r-neighborhood

of each target peak, given by the (2r + 1)2-square which has an r-radius in-circle.

Mathematically, this may be expressed as:

κ(I(1)
n , I(2)

n ) ≤ Γ(I(1)
n , I(2)

n )× (2r + 1)2, (2.9)

where Γ(I
(1)
n , I

(2)
n ) is the number of target peaks common to I

(1)
n and I

(2)
n .

The above algorithm is setup for target-cognizant matching between I(1) and

I(2) across the nth cluster. We can setup the target-cognizant clustering approach

to potentially enable hierarchical clustering across classes and sub-classes of target

analytes and perform forensic matching based on the similarity factor S(·) between

any two clusters at a given level between two GC×GC images. However, the similarity

factor S(·) is not limited by the cluster size and is scalable across the cluster hierarchy.

To combine the forensic match score across N clusters at the same level of hierarchy,

we simply change the scope of (r1, r2) ∈ ∩2
m=1I

(m)
n to (r1, r2) ∈ ∪Nn=1

(
∩2
m=1I

(m)
n

)
.

The key benefit of this hierarchical target allocation is that it enables compres-

sion, indexing, querying and subsequently forensic interpretation at multiple scales

within high-dimensional data. For this reason, the TNA method was originally pre-

sented as Hierarchical Target Allocation (HTA) in [52], the first publication related

to this work. However, as we have been discovering over extensive data analysis, the
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potential for hierarchical clustering, though computationally elegant, leaves out the

important scenarios where target clusters representing different elements of the finger-

print may indeed overlap without constituting a hierarchy. Thus imposing artificial

hierarchy across the target clusters not only limits the robustness of interpretation

but may mislead the scientific investigation in key scenarios such as discovering the

locally overlapping fingerprint of neighboring oil reservoirs, or say, the linking mater-

nal age and environmental factors to PCBs in breastmilk. On the other hand, not

imposing hierarchy between target clusters still leads to efficient not sub-optimal data

compression, indexing and querying possibilities. Pseudo-code implementation of the

TNA algorithm is given in the next page.

2.4 Results

We perform the comparison between different injections via the scores given

by TCC and TNA algorithms. Figures 2.4 and 2.6 show the percentage of match,

Cross-TCC score and Cross-TNA scores. As can be seen from Figure 2.6 the TNA

algorithm has done a very good job in identifying the samples from Macondo area.
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Algorithm 2.2 Target Neighborhood Analyzer (TNA)

� Input:

∗ Reference Image Iref .

∗ Test Image Itest.

∗ r (neighborhood radius).

∗ ρτ (threshold).

� Output:

∗ Similarity between the input graphs

� Step0:

∗ Allocate the main targets of the reference image as the highest peaks (or manually

label the N main targets):

I
′
= ∪iTi = Iref (top N peaks) , i = 1, 2, 3, ..., N .

� Step1:

∗ Construct the r-neighbourhoods by a determined neighborhood within the main

targets in the reference image:

I
′′k
ref =

r1+r⋃
i=r1−r

r2+r⋃
j=r2−r

I
′
(r1+i, r2+j) (kth(1 ≤ k ≤ N) r-neighborhood in Iref using the

given ρτ and r around the main target location with the retention time of (r1, r2)).

� Step2:

∗ Construct the r-neighborhoods in the test image Itest at locations given by the

neighborhoods of Iref .

� Step3:

∗ Compute the Similarity Score for each of the corresponding r-neighborhoods. (Im-

plementing Equation 2.8), call it SimScore.

∗ return SimScore.
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Figure 2.4: Cross-TCC score. In this figure Sample 1 from Macondo area has been

set as the reference sample and the other samples have been compared against it.

The plot is shown for different choices of number of clusters where clusters have been

constructed using the single linkage clustering. The peak threshold is set to 0.2.

As Figure 2.5 suggests, the choice of two for the number of clusters is the best

for the given dataset. The minimum percentage of match from one Macondo sample

to the reference sample is 97.52% and the maximum percentage of match of one non-

Macondo sample to the reference sample is 95.71%, so with choice of 2 for the number

of clusters the Macondo samples can be detected from non-Macondo injections.
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Figure 2.5: Cross-TCC score. In this figure Sample 1 from Macondo area has been

set as the reference sample and the other samples have been compared against it.

The plot is shown for different choices of number of clusters where clusters have been

constructed using the single linkage clustering. The peak threshold is set to 0.2.
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Figure 2.6: Cross-TNA score. In this figure Sample 1 from Macondo area has been

set as the reference sample and the other samples have been compared against it.

The plot is shown for different choices of number of r − neighborhoods (nr) where it

has been evaluated at r = 5.

To have a better illustration of the TNA method, we can look (Figure 2.7)

at the choice of thirty for the number of neighborhoods already shown with other

choices of number clusters in Figure 2.6.
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Figure 2.7: Cross-TNA score for the choice of thirty for the number of neighborhoods

shown in Figure 2.6.

2.4.1 Space-saving achieved by TCC and TNA

We test the performance of our algorithm in terms of compression, i.e. the

number of the points needed from the reference image to test against the test samples

to detect those similar to it or from the same area. The number of the points used in

the TCC algorithm is a function of the peak threshold imposed in the reference image

at the start of the algorithm. As we apply higher thresholds we will use less number

of the target and non-target analytes from the reference image in TCC algorithm,

but the risk of miss-detection of the samples similar to the reference image increases.
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In the TNA algorithm also the number of the points used from the reference image is

proportional to the number of the neighborhoods and the radius of the neighborhoods.

As we saw earlier, as the neighborhood radius increases in the TNA algorithm, the

samples similar to the reference image increases and the distinction between samples

are better seen. It is natural because as we use more number of target or non-

target analytes we will take more pixels into consideration and this should lead to a

better distinction among the forensic injections. If we could achieve our goal, which

is the robust separation with less number of points for comparison, we have saved

computational complexity where computation here means point to point comparison.

We define the amount of Space-saving as:

Space− saving = 1− n

N
(2.10)

where n is the number of points needed for comparison from the reference

image for the accurate separation and distinction of forensic sources with respect to

it, and N is the total number of the points in the reference image. In Figure 2.8

we have plotted the amount of the space-saving achieved by TNA (on the left) and

TCC (on the right). The number of the points needed for comparison in the TNA

method is a function of the (number of neighborhoods)nr and their radius (r). Hence,

space-saving is a decreasing function with respect to these terms. In Figure 2.8 for

TNA we have set the radius of neighborhood to five and plotted the amount of the

space-saving with respect to the number of neighborhoods. The figure labeled as

Upper-bound refers to the maximum number of points needed from Equation 2.9 and
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Experiment which refers to the amount of unique points needed. The difference in

the number of the points needed in the experiment case and the case given by the

upper-bound is that many points are common between the neighborhoods that should

be considered once. Additionally, some of the points have zero amplitude at both of

the reference and test images that should not be considered as computation. In TCC

the space-saving is a function of the peak threshold and in Figure 2.8 on the right we

have plotted the space-savings for the values between 0.2 to 0.52. The value of 0.52

for the peak threshold is the maximum amount of the threshold that we can apply to

the reference image and still have an accurate distinction between forensic injections

by comparing the remaining points against the test image such that we record those

samples similar to the reference accurately. Once we apply a higher peak threshold

the separation and identification is not done accurately anymore. In the plot for the

space-savings of TCC we have set the number of clusters equal to two.
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Figure 2.8: Amount of space-saving achieved by TCC and TNA. The amount of

space-saving in TCC is a function of the peak threshold applied at the first stage

of the algorithm to distinguish the clusters. The space-saving in TNA is a function

of the r-neighborhood. The numbers recorded in the images refer to the number of

points needed from the reference image to compare against test samples in order to

accurately distinguish those that are the same as the reference image.

2.5 Creating simulated images in order to increase the dimensionality

of the dataset

In order to test the robustness of the proposed TCC and TNA methods, we

may need to have a dataset with a higher number of images. In fact as the proposed

work in chapter 4, we will test the methods with different datasets, but we could also

create simulated datasets just by adding random noise to one of the images in the

dataset and create as many simulated images as we wish. We can add noise, both

to the location and the amplitude of the peaks in the GC ×GC image. The way we
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tested the performance of our methods is that we first set one sample as the reference

sample, say one sample from the Macondo injections. Then we take the average of

the remaining thirteen samples from the Macondo area and then add noise to it in

order to create as many simulated images as we wish, say two hundred samples with

some noise standard deviation. Then we treat these simulated samples as simulated

Macondo samples. Hence, we will have two hundred and thirteen Macondo samples

to compute their TCC or TNA scores, and then record the average of the percentage

of match of Macondo injections. In the next step, we set another sample from the

Macondo area as the reference, say second sample, and go through the same steps

while creating simulated images from the averaged images of samples one and samples

three to fourteen. Again record the average of the percentage of match of Macondo

injections. We will do the same steps for all of the fourteen injections, so we will

have a vector with fourteen entries where the kth entry of this vector is the average

of the percentage of the Macondo injections to the kth Macondo sample. Now, we

change the value set for the noise standard deviation and compute the same vector

for that standard deviation. Figure 2.9 and Figure 2.10 shows the average TCC, TNA

and PCA scores, where in Figure 2.9 all of the three scores decrease as the standard

deviation of the noise increases but in Figure 2.10 the average TCC score increases as

the standard deviation of noise increases. In the proposed work we will also analyze

this situation where TCC increases in the percentage of match even if the standard

deviation of noise increases.
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Figure 2.9: Average percentage of match of the Macondo samples using simulated

samples by adding noise to the amplitude of the test images and creating a larger

data-set. The number of injections created by the simulation is two hundred images.
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Figure 2.10: Average percentage of match of the Macondo samples using simulated

samples by adding noise to the location of the test images and creating a larger

data-set. The number of injections created by the simulation is two hundred images.
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CHAPTER 3
COMPRESSED FORENSIC SOURCE IMAGE USING SOURCE

PATTERN MAP

3.1 Background Motivation

Forensic source differentiation between marine oil samples after major oil spills

(e.g. Deepwater Horizon spill, Gulf of Mexico, April 2010) is not only fundamental

to environmental monitoring, but also a daunting data compression and signal pro-

cessing challenge. This is primarily due to three related factors: (i) High-volume

data generated from analyzing petroleum samples from different industrial oil reser-

voirs, (ii) Petroleum fingerprinting relying heavily on interpreting joint biomarker

distributions that carry overlapping fingerprints specific to the locale and the indi-

vidual reservoir, (ii) Lack of robust disambiguation techniques between the highly

correlated fingerprints of neighboring reservoirs. As such, no known method exists

to robustly disambiguate source-specific information against correlated interference

from regional characteristics. Therefore, a vast amount of data repository space is

wasted across numerous commercial and national petroleum laboratories storing re-

dundant region-specific biomarker information that is shared across thousands of oil

reservoirs common to a locale. Beyond highly inefficient data storage, source-agnostic

data analytics (i) mislead forensic interpretation in the aftermath of major oil spills,

(ii) render offline in-situ comparison of field samples against known sources impossible

due to the highly redundant data volume, and (iii) renders high-speed indexing and

querying across large petroleum databases impractical. Harnessing pattern discov-
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Figure 3.1: Two-dimensional Gas Chromatography related to one oil sample.

ery, data compression and associated learning techniques to drastically compact these

highly redundant datasets, while preserving key chemical signatures of the petroleum

biomarkers in the motivation and scope of this work [53].

Two-dimensional Gas Chromatography (GC×GC) provides the current state-

of-the-art in analytical resolution of a complex molecular mixture such as petroleum

into constituent components, of which the biomarkers (hopanes and steranes) are spe-

cial compounds that host the regional and source-specific fingerprint. This technology

generates a two-dimensional time-series of peaks, each time-series representing com-

pound resolution along independent instrument columns, which are jointly rendered

as a high-resolution peak distribution image or a three-dimensional surface with the

two time-series as the two dimensions, and peak magnitude constituting the third

dimension (refer Figure 3.1).
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3.1.1 Data Compression Challenges

The GC × GC signal for each oil sample consists of an overlapping spread

of hundreds, if not thousands, of biomarker peaks, which roughly follow a locally

Gaussian peak shape. When we consider the reality that one oil reservoir (source)

can have hundreds of thousands of samples in one data repository, and that hundreds

of data repositories that share data across hundreds of highly correlated neighboring

sources, the magnitude of data deluge and the compelling need for compact data rep-

resentation, signal separation, and efficient storage, analysis, indexing and querying

is apparent. However, blind application of existing data compression techniques (e.g.

PCA, ICA) will not achieve the data engineering goals as it is critical to preserve

the individual identity of the biomarker compounds in the compressed and classified

end-product to allow a human expert (e.g. an EPA agent) to physically interpret and

validate the source-specific data fingerprint.

3.1.2 Key contributions

One of the most interesting problems related to these GC × GC images are

learning the common pattern between those images corresponding to the samples

extracted from the same area, and then use the common pattern to compare it against

the patterns of the other areas. A GC × GC image can have a pretty large size, if

we can learn the common pattern specific to one source, then we can just save the

common pattern, as the features of the area and then throw away the remaining

peaks. So this process can lead to a compressed version of the image, which is the
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basis for this work. Our objective is to compact high-resolution intricate GC × GC

images along domain-specific (source or locale) class boundaries. Accordingly, we

propose two key innovations:

• Derive and localize biomarker-cognizant source-specific features: We achieve

this by localizing biomarker peaks in peak topography maps using peakratio

thresholding.

• Compact source information along compound-cognizant peak dictionaries: We

achieve this by constructing and classifying peakratio threshold maps that com-

pact the GC × GC image along source-specific patterns, represented as highly

compact peak dictionaries uniquely specifying a source. We distinguish between

biomarker and compound cognizance as not all classified compounds fall into

well-established biomarker dictionaries.

3.2 Compression as a pattern recognition problem

For a library D = {Ik11 , I
k2
2 , I

k3
3 , . . . , I

kK
K } , where Iki (1 ≤ i ≤ K) means there

are k number of images for the GC ×GC image of the region indexed by i, available

in the library. Note that these k images are not exactly the same. This can have a

couple of reasons, first the GC × GC images are achieved after injecting oil sample

through GC×GC system. This GC×GC system carries some noise within its internal

physical elements. This noise can potentially have a random behavior, so if we inject

the same samples at two different times, we may get two images at the output which

may not be exactly the same. Secondly, oil samples can be extracted from the same
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area in different time intervals, for example in different years, and the area could have

potentially been affected by some phenomenon like oil spill and this may affect the

sample and consequently the GC×GC image at the output of the GC×GC system.

Two-dimensional GC×GC image related to a petroleum source from a petroleum-rich

region consist of source-specific and sub-regional peaks. Sub-regional peaks constitute

the common GC × GC topography of all of the sources from the same region, and

source specific peaks exhibit topography specific to the particular source. One of the

main tasks of the pattern recognition is to disentangle the common regional fingerprint

from the topographic fingerprint specific to the source. Mathematically, an oil sample

generated by the GC × GC,GC −MS etc, denoted as Ic, can be represented as a

union of overlapping fingerprints images, i.e.

Ic =

{
M⋃
m=1

Irm

}
∪ Is (3.1)

Where Is is the source specific fingerprint and I(rm) represents the fingerprint

of the rth sub-region, among M potentially over-lapping regions. If we could success-

fully disentangle
{⋃M

m=1 Irm

}
and Is, then we have learnt the source pattern of the

oil sample and can use Is instead of Ic as the GC ×GC representative of the region

when the problem is to compare between two GC×GC images related to two regions

not closely located to each other. In other words, we can assume the pixels in Is are

the features we have extracted from Ic, and then would treat Is as the compressed

version of Ic. Needless to say that Is is the result of the union of Is and the interfer-

ence terms, so the intensity of the pixels of Is at any location is less than or equal to
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Figure 3.2: A compressed image is achieved by constructing a new image based upon

the extracted features as opposed to using the whole original image.

that of Ic. The term
{⋃M

m=1 Irm

}
is used as a comparison between the samples with

the same source fingerprint (are from the same region) but with different sub-regional

effects. Once we have learnt the pattern, the coding complexity of the image reduces

considerably, while coding the image Ic will reduce to the coding of Is.

3.3 Method

As discussed in Section 3.2, the problem is to learn the common pattern,

or equivalently the feature(s) of the images related to one source (one element in

library D) and then save the pattern as the compressed version of the source, which

requires an algorithm to find the pattern. We adopt the local PTM algorithm for

this purpose, where the PTM algorithm has successfully worked and comprehensively

been explained in [54].

Now, the problem reduces to the following: Given, for example, the first el-

ement of the library Ik11 , which is a family with k1 members (images) for the first

source, find the pattern common between these images using an algorithm, with the
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knowledge that each of these images is a GC ×GC image.

Let’s assume one of the members of this family, lets say the first element,I1
1

(reference sample), is the image extracted in a pretty much ideal case (Ic ∼= Is);

without noise, without the interference of other closely located sample (
{⋃M

m=1 Irm

}
=

∅). Then finding the common pattern among all of the family members, is equivalent

to finding the common pattern of them with respect to the first member (reference

sample (Iref )). Without losing generality, from now onwards, we develop our method

on this family, called I(1,gcxgc). Before going through the algorithm lets have a look

at the GC ×GC image:

A GC × GC image is an M × N image consists of M rows and N columns:

I1,gcxgc = IM×N , where each column of the image is composed of a couple of inter-

twined Gaussian functions:

I1,gcxgc(i) = δ(x− i)×
κ∑
j=1

G(wj, µj, σj) (3.2)

G(w, µ, σ) = w.e−(y−µ)2/2σ2

Where x and y denote the location for the row and column respectively and κ

is the number of Gaussian functions in the corresponding column. Assuming the is

pretty close to zero, then G(w, µ, σ) ∼= w.(y − µ). Hence:

I1,gcxgc(i)
∼= δ(x− i)×

κ∑
j=1

wj.δ(y − µ) (3.3)
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So along one column of the image, the peaks of the signal, represent the infor-

mation bearing part of the image.

3.3.1 A Brief Overview on Peak Topography Map (PTM)

PTM [54] explains the procedure pretty comprehensively, here we just touch

upon it briefly as we will use the local-PTM score later. Btw, the comprehensive

detalis about the Peak Topography Map has been studied in chapter 5. As discussed

earlier, the GC × GC image consists of couple of peaks, w′js located at µ′js, so the

problem of comparing between two GC × GC images will turn into the problem

of comparing their amplitudes at the same location. Suppose image I1 has a peak

amplitude of w1 and image I2 has a peak amplitude of w2 at the same location.

PTM [54] introduces a metric to compare between these peaks as following:

sim(w1, w2, loc(x, y)) = max

{
w1(x, y)

w2(x, y)
,
w2(x, y)

w1(x, y)

}
(3.4)

In case sim(·) for this location has a value of 1, then w1 = w2. But as

discussed in Section 3.2, because of some issues like the baseline noise , two peaks can

be considered as equal or matched even if the function max(·, ·) has a value rather

than 1 and as we know this function has a value greater or equal to 1. Therefore, we

accept two peaks as being matched if this function has a value of ρτ = 1 + ε(ε > 0).

So we claim two peaks w1 and w2 at the location of (x, y) are matched if:

sim(w1, w2, loc(x, y)) = max

{
w1(x, y)

w2(x, y)
,
w2(x, y)

w1(x, y)

}
≤ ρτ (3.5)
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Figure 3.3: The τ −map image for the 14 injections of Macondo well for r = 5 and

Mp = 95%.

Clearly setting ρτ to ∞ will lead to a complete match between any two ar-

bitrary peak amplitudes. Therefore, we say similarity between two GC × GC using

PTM is a function of ρτ . The local-PTM score is the PTM score while comparing

the two images locally around each of the pixels of the image.

3.3.2 What is a τ −map ?

τ −map image is a 3d image, τ(x, y, r), depending on the parameter r, where

τ(x, y, r) is the minimum ρτ for which M1, the mean of the percentage of match of

Im1 (m 6= reference index) to the reference image(Iref ), is greater or equivalent to Mp%
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match for the local PTM centered at I(x, y) for a given radius of r. The parameter r,

represents the local PTM neighborhood, which means when we are to compare two

image, like Iref and Itest via PTM algorithm, we construct the r-neighborhood around

the location denoted by (x, y) in both of the images and the compute the PTM score

fir these neighborhoods. The r-neighborhood around a location (x, y) in an image I

is defined as:

I(2r+1)×(2r+1)
rn (r) =

r⋃
i=−r

r⋃
j=−r

I(x+ i, y + j) (3.6)

Mp is a parameter controlling the common pattern in a way that as Mp in-

creases, the common part gets more more specific and small, because as we need a

more percentage of match between the members in a family, the common part will

decrease in size.

3.3.3 Model Petroleum Dataset

For demonstration purposes, we adopt a public-domain dataset from the Reddy

laboratory, which has 34 petroleum GC ×GC injections extracted from samples col-

lected across different parts of the world, with a focus (14 samples) on the Macondo

well, Gulf of Mexico, the source of the Deepwater horizon spill. The first family,

Ik11 (k1 = 14) are these 14 samples and the reference sample, Iref is the first sample of

these 14 injections, and define the case study for a particular oil source. In Figure 3.3

the τ −map image has been plotted for this dataset and the corresponding family.

Any image in this dataset is a 186× 277 matrix (total of 51522 pixels).
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3.4 Creating a Compressed Image Using τ −map Image

Figure 3.3 shows the -map image, where the color-bar on the right side shows

the numbers between 0 to 2. Note that PTM algorithm depends upon ρτ and as

we increase this parameter, more and more peaks can match to each other, so in an

extreme case setting ρτ =∞ will match all of the peaks to each other, hence a large

choice of ρτ is not good and we need to set an upper bound for ρτ . In Figure 3.3,

we have set this upper bound ρτup = 2. For two peaks which are matched with a

choice of ρτ > 2 , we simply consider them as non-matched and set a value of 0 for

the corresponding location in τ −map image.

Algorithm 3.1, shows the process to construct a τ −map image:
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Algorithm 3.1 τ −map Image
� Input:

∗ The family images Ik11 . Suppose the first image of the family is the reference image,Iref . Let the rest of the images

in the family be Imtest(2 ≤ m ≤ k1).

∗ r, the local PTM-neighborhood radius.

∗ Pτ , the valid ρτ values vector, for example: Pτ = [1 : 0.05 : 2].

� Output:

∗ τ −map image

� Initialization:

∗ Start from the first element of image; (x = 0 and y = 0).

� Step0:

∗ ρindex = 1. (the index choosing one choice of ρτ form Pτ ).

∗ m1 = 2.(the index choosing one image from the test images of the family ).

∗ sum = 0.(the parameter counting the sum of percentages of match of the test images against the reference image).

� Step1:

∗ Let IT = {Imtest}|m = m1

∗ Construct the r-neighborhood image around the location (x, y) for both Iref and IT .

Ireflocal
=

r⋃
i=−r

r⋃
j=−r

Iref (x+ i, y + j)

ITlocal
=

r⋃
i=−r

r⋃
j=−r

IT (x+ i, y + j)

� Step2: sum+ = PTM(Ireflocal
, ITlocal

, ρτ )

� Step3:

∗ If m < k1: Increment m1 by 1 ,go to Step1.

∗ Else: sum = sum
k1−1

(computing the average of percentages of match), go to Step4.

� Step4:

∗ If sum > Mp : τ(x, y, r) = ρτ , proceed to the next location of the image ,go to Step0.

∗ Else: Increment ρindex by 1,go to Step1.

In Figure 3.3, the values of τ for two points of the image have been shown in

green and blue. The location related to the τ2 = 1.95 is (xg, yg) = (42, 36) and that of
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the blue is (xb, yb) = (14, 181). Therefore, the region with the radius of r0 = 5 around

the blue point requires a very low ρτ = 1.15, so this biomarker region shared the

fingerprint pattern with all the members of the source family (Macondo well) of Ik11 ,

and defines the source-specific dictionary. On the other hand, the biomarker region

around the green location requires a very high ρτ = 1.95, i.e., the peakratio threshold

constraint needs to be significantly laxed to match any patterns between the images.

Therefore this part of the image is not representative of the images in the source

(Macondo well) family. The final compressed image of the Macondo family of

images of Ik11 , consists only the pixels for which the corresponding τ −map

image is less than a threshold ρτup . (The value for ρτup is a tunable parameter

that could be chosen based upon the application of the chemical image, in Figure

3.3 and 3.5, we have set this value ρτup = 2 hence in our figures we will not sweep

over the values of ρτup > 2). Note that a family has been learnt well and the values

for the corresponding τ −map image has been selected optimally, once adding a new

member to the family will not change their -map parameters. Suppose for a given

choice of ρτ0 , the x-locations and y-locations of all the points having ρτ0 in τ −map

are denoted by X0 and Y0, respectively. (x0, y0) is one location from these location

vectors:

The local compressed image around the location (x0, y0) is:
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I1,gcxgc(local−compressed)(r, ρτ0 , ρτup) =


⋃r
i=−r

⋃r
j=−r Iref (x0 + i, y0 + j) if ρτ0 ≤ ρτup

0 otherwise

(3.7)

Therefore the final compressed image will be:

I1,gcxgc(compressed)(r, ρτ0 , ρτup) =
⋃

x0∈X0,y0∈Y0

I1,gcxgc(local−compressed)(r, ρτ0 , ρτup) (3.8)

And the compression rate at the peak level will be as following where this

metric is novel as it considers the compression along the peaks, as the information

bearing part of GC ×GC image:

cr(r, ρτ0 , ρτup) =
]peaks of Iref

]peaks of I1,gcxgc(compressed)

(3.9)

3.4.1 Good Choice of ρτ : A trade-off Between the Compression Ratio and

Common Part Maximization

The compressed image depends highly on the value of ρτ , a very low choice

of ρτ may just extract a handful of the peaks of the image as the representative of

the family. But it may not be a very good choice because then any little jitter or

noise injected to the sample during the process of generating the GC × GC image

via GC × GC system can rule out a peak as the common peak among the family

members. Therefore, we should also take the noise into consideration and have a

reasonable choice for this parameter. One good choice is to construct the histogram
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Figure 3.4: Histogram of τ −map image for r = 5 and Mp = 95%.

of -map image and observe the different number of locations with the same choice of

ρτ and set the optimal value of ρτ where this number is maximum, the reason is that

the choice of ρ∗τ which maximizes the histogram indicates that most of locations of

the image agree upon the fact that this choice of ρτ will match the images within the

family the most.

ρ∗τ = argmax(Hist(τ −map, ρτ )) (3.10)

1 ≤ ρτ < ρτup

Where Hist(α, β) denotes the histogram of image for the pixel value of .

Figure 3.4 shows this histogram, it can be seen that the choice of ρτ = 1.3 will lead

to the maximum number of locations within the family, so we will set ρτ = ρ∗τ = 1.3.

On the other hand the choice of ρτ affects the achievable compression ratio, a choice
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Figure 3.5: Compression ratio achieved by different choices of ρτ for the model

petroleum dataset.

of ρτ that maximizes the above-mentioned histogram will lead to a compressed image

which has a high non-zero elements, and this will lead to a low compression ratio.

Therefore, the choice of ρ∗τ should also take the compression ratio into account.

3.4.2 Compression Ratio

As discussed in Section 3.4, the compression ratio is given by:

cr(r, ρτ0 , ρτup) =
]peaks of Iref

]peaks of I1,gcxgc(compressed)

(3.11)

As can be seen from Figure 3.5, the compression ratio values exist with the

choice of ρτ ≥ 1.15, this is because in a value lower than 1.15 the number of peaks

in the compressed image is zero, so we are just interested in ρτ ≥ 1.15. Remember
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the choice of ρτ = 1.3 led to the maximum of locations with the same ρτ where the

achieved compression ratio for this choice is about 1.37. The maximum achieved

compression ratio has been achieved at ρτ = 1.95 but this choice of ρτ may not be

a very good idea because it will introduce some peaks as the common peaks within

the family which may not be the case; so a number between these two extremes can

work fine (1.3 < ρ∗τ < 1.95).

3.5 Conclusion

In this chapter we introduced a novel representational map, called τ −map,

for one family of the GC ×GC images. We discussed how we could use this map in

order to achieve a compact representative of the family and come to a compressed

image for the family. This map is actually a function of the peak-ratio threshold ρτ

which can be tuned in order to achieve the desired compressed image.
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CHAPTER 4
LEARNING FORENSIC PATTERNS WITHIN A NEURAL

NETWORK FRAMEWORK

4.1 Introduction

Separation and classification of GC×GC images can be done by analyzing the

whole chromatogram’s pixels and peaks. As the number of the peaks in a GC ×GC

image is large, the analysis and interpretation requires high computational complexity

and the analysis time may be considerable. Therefore, a need for the analysis using

a subset of the peaks or a reduced version of the image is needed. In this chapter, we

apply the SAX algorithm as a method to achieve a compressed version of the image

in a neural network framework. We then compare this method against the other

traditionally used methods to gauge its performance.

4.2 Problem Statement

As discussed earlier, suppose we have a dictionary D, with K GC × GC

samples, D = {I1, I2, , IK} where each of the members of the library illustrates the

GC × GC pattern of one unique geographical region. The geographical regions of

these GC × GC images are saved in a set R = {r1, r2, .., rK} where the ith element

in R indicated the geographical region of ith image of D. Lets assume K is large

enough, so that we have the GC × GC patterns of all possible geographical regions.

Now, for a newly-extracted unknown GC ×GC test image, Itest, we are to determine

the geographic region of Itest by the information in D. If K is large enough, the
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geographical region of Itest will be the same as or pretty close to the region of the

member of the library in which Itest has the most similarity with, by choosing a

suitable choice of similarity criterion, which will be discussed later. Therefore, we

should compare Itest with all of the members of D one by one. Mathematically, if we

define a similarity criterion like, S, then:

i = argmax S(Iref , Itest)
1≤ref≤K

. (4.1)

Geographical Region of Itest = R(i).

Where in equation 4.1 ref indicates the index of the image in D. Needless to

say, once we have a dataset of test images with more than one image under test, we can

use the network for each of the samples from the dataset and realize its geographical

region.

4.3 Technical Approach

We present the solution to the problem stated in Section 4.2 with the network

shown in Figure 4.1. As can be seen the network is similar to a neural network with

three layers of input, hidden and output layer. As opposed to the normal neural

network, we don’t learn the weights of the network through an iterative learning

process, but we set these weights according to our proposed method.
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Figure 4.1: Illustrative model of the proposed network.

4.3.1 Some Notes on the proposed network

Let’s quickly take a note on different parts of the network in Figure 4.1. The

box on the left, has two parts, first the GC ×GC image of the image under the test

(Itest) and a block for the index of the reference samples from the library D which

this index is initialized as one (Ref Index=1). The test image is an M ×N matrix, so

in the input layer we have M ×N inputs, shown as X1 to XM×N where each of these

inputs indicates one pixel of the test image. These inputs are transmitted by the

weights Wτ to the hidden layer. In Section 4.3.3 we will discuss on the algorithm to

construct Wτ . The hidden layer nodes are also carried by all one vector, 1(M×N)×1, to

the next hidden layer. In this layer the G function is implemented between Itest and

the reference image. Finally, the function F has the role to determine the geographical

region of Itest. F has also K memories. First, the Ref Index is one, so Itest is compared
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against the first element of D and the corresponding dmin is saved in one memory of

F . Once this comparison is done completely and dmin is saved, F sends an Increment

Ref Index command and in the next clock the test should be compared against the

second element of D and so on. Finally once Ref Index exceeded the size of the

dictionary, K, F outputs the index having the lowest dmin, which is the index of the

geographical region of Itest from the set R.

4.3.2 Similarity Criterion

As discussed comprehensively in [55] and chapter 5, comparing two GC ×GC

images is the comparison between their corresponding peaks at the same location of

their image. A GC ×GC image is an M ×N image having M ×N pixels. We sweep

the image by going along each of its N columns and save the local maxima. We call

these local maxima along each of the columns as peaks. Suppose we are to compare

two images, Iref and Itest. At one location, like (x0, y0) the amplitude of the peaks

in Iref and Itest are pref (x0, y0) and ptest(x0, y0). In [55] the similarity between these

two peaks are defined as:

Sim(pref , ptest, x0, y0) = max(
pref
ptest

,
ptest
pref

) (4.2)

As known, the function max(α, α−1) has a value greater or equal to one for all

α ∈ R. Therefore, if the function Sim(·) has a value of one, then α = α−1 or in our

case pref = ptest. Any difference between the values of pref and ptest causes in a value

greater than one for Sim(·). We can call two peaks as similar once their the Sim(·)
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for their corresponding location is one, but there exists potential experimental noise

during the process of producing the GC × GC image in the lab. Hence, we define a

peak-ratio parameter τ as:

τ = 1 + ε (ε > 0) (4.3)

And claim two peaks as similar, once the Sim(·) function for their corre-

sponding location is less than or equal to (Sim(·) ≤ τ). The parameter ε indicates

the amount of deviation that is acceptable for us to consider two peaks as similar,

the more the value of ε is, the less strict we are in the definition of similarity between

two peaks. In an extreme case, if we set ε =∞, all of the peaks will be considered as

similar because Sim(·) is always less than or equal to ∞.

4.3.3 How to set Wτ

There are M×N inputs, X1 to XM×N , but as discussed in the previous section,

just the local maxima of the image are saved and used as the comparison. Therefor,

the weights for the non-peaks are set to zero. For calculating the weight of one peak

like ptest at the location (x′, y′), once the peak in the same location in the reference

image is pref , we set an upper bound for the acceptable deviation, say up and the

corresponding peak-ratio, τup = 1 + εup. Finally, we perform the following two-stage

process:

Stage1: Calculate the Sim(·) for the location of the peaks as in Equation 4.2.

Stage2:
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∗ If Sim(·)ρup then replace both pref and ptest by a common peak, pcommon:

pcommon = min(pref , ptest).

so the weight of ptest will be:

wtest,x′,y′ =
pcommon
ptest

.

∗ Otherwise, keep the exact values of pref and ptest which means wtest(x
′, y′) = 1.

The reason which we replace pref and ptest by pcommon is that, we have assumed

once Sim(·) is less than equal to τ for that location, these two peaks are similar, and

therefore we manually assign an equal value to them.

4.3.4 How to set ε

Suppose we have the library R = {Ik11 , I
k2
2 , . . . , I

kN
K }, where the ith element

of the library, Ikii , or ith family, means we have ki number of GC × GC image for

the region indexed by i. The ε(i), the ε for the ith family is disproportional to the

deviation, or dmin between the members of the family. In Figure 4.2 we have plotted

the total MSE of the PAA’s or, dmin, for the family of images from Macondo region

with seven members. We have considered these seven samples as training samples.

As can be seen, the minimum deviation between the PAA’s of the family occures at

εup = 0.4, therefore we use this value for εup.
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Figure 4.2: Optimal choice of ε

4.4 Function G

Function G can compare the reference (Iref ) and the test (Itest) images based

upon one of the following six schemes:

• Direct Euclidean distance Iref and Itest

• Correlation between Iref and Itest

• Difference between the SAX representation of Iref and Itest

• Difference between the PAA representation of Iref and Itest

• Evaluating the maxima within each interval(w) of the time series and calculating

the Euclidean ditance between the maxima
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• Similarity between (Iref ) and (Itest) via computing PTM score

The comprehensive study on SAX algorithm can be found in [2]. Here, we

touch upon it briefly, as we will use it in our proposed network in Figure 4.1. Symbolic

representation of time series (SAX) proposes a method to represent time series of size

m to a string of arbitrary size of w(w < n). In this case, we will have dimensionality

reduction which can be a big deal once the size of the time series are large. As formally

defined in [2], a time series C of length n can be represented in a w-dimensional space

by a vector C̄ = c̄1c̄2c̄3 . . . c̄w. The ith element of C is calculated by the following

equation:

c̄i =
w

n

j= n
w
i+1∑

j= n
w

(i−1)+1

cj (4.4)

In other words, the time series is divided into w intervals of the same size,

then the data in each of these intervals is replaced by the mean of the data. We

call this representation of the times series, the Piecewise Aggregate Approximation

(PAA) representation of the time series. After applying the SAX algorithm the final

symbol representation of the times series C will be:

Ĉ = ĉ1ĉ1 . . . ĉw (4.5)

Note that C is the original times series, C̄ is its PAA representation and Ĉ is its SAX

representation.
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Figure 4.3: The PAA and SAX representation of a model time series. In this figure,

the there are three symbols, a,b and c. The time axis has been sliced into seven

intervals. The SAX representation of the time series in this case would be Ĉ =

aabcccb.
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4.4.1 Calculating the distance between two time series using the six different

schemes

Suppose we have two time series C1 and C2, the Euclidean distance between

them is:

d =

√√√√ n∑
i=1

(ci1 − ci2)2 (4.6)

Where ci1 and ci2 mean the ith element of C1 and C2. After transforming them

into their PAA representation and constructing their symbol representation we should

calculate the symbol distance of their representations. Therefore, we need a look-up

table in order to have the distance between the symbols. Such a table is given in

Table 4.2. Then, The Euclidean distance between the two SAX representation of C1

and C2 is given as [2]:

d̂ =

√√√√n

w

w∑
i=1

[dist(ĉi1 − ĉi2)]2 (4.7)

Where ĉi1 and ĉi2 mean the ith element of the Ĉ1 and Ĉ2, respectively.

And the Euclidean distance between the PAA representation of the two time

series is :

d̄ =

√√√√ w∑
i=1

(c̄i1 − c̄i2)2 (4.8)

We can also take the maximum along each of the intervals (w) as the repre-

sentative of the interval and compute the Euclidean distance between the maxima as

the comparison metric:



www.manaraa.com

75

cmax(i) = argmax C(i: i+ w)
i∈{1,2,..., n

w
}

. (4.9)

And the Euclidean distance between the maximum-along-interval representa-

tion of the two time series is :

dmax =

√√√√ w∑
i=1

(cimax,1 − cimax,2)2 (4.10)

The two-dimensional correlation between the two images Iref and Itest images

are computed as following:

Corr2(Iref , Itest) =

∑
m

∑
n[(Im,nref − Īref )× (Im,ntest − Ītest)]√∑

m

∑
n(Im,nref − Īref )2 ×

∑
m

∑
n(Im,ntest − Ītest)2

(4.11)

where m and n represent the first and the second dimension of the image,

respectively. Īref and Ītest also represent the mean value of the reference and test

images, respectively.

Now, let’s look at the initial network in Figure 4.1, the output of the G node

is d which is calculated for the comparison of Itest and any of the reference images

from D. Function F , then saves all of these values for d̂ and outputs the index of

these values of d̄ to determine the geographical region of Itest from R.

i = argmin dmin
1≤RefIndex≤K

. (4.12)

Geographical Region of Itest = R(i).
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4.4.2 Why SAX helps us in solving our problem

The main usage of SAX is that it reduces the dimensionality but the other

reason we have used it in solving our problem is that it is pretty robust to the noise

and peak shifts. As discussed, the GC×GC images are prone to noise and this causes

a change to their amplitudes. On the other hand, due to the noise, peaks experience

some shifts in their location of occurrence. A peak should occur at the retention time

of (r1, r2) but it shows up at (r1 + δ1, r2 + δ2). By slicing the time into couple of

intervals and averaging the data, we have implicitly applied a moving average filter

on the data which can work as a noise filter.

4.5 Result

Figure 4.4: The percentage of similarity of thirty three samples from the model

dataset to the first reference sample from Macondo well(1).
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Figure 4.5: The percentage of similarity of thirty three samples from the model

dataset to the first reference sample from Macondo well(2).

Figure 4.6: The percentage of similarity of thirty three samples from the model

dataset to the first reference sample from Macondo well(3).
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Table 4.1: Percentage match between different Gulf of Mexico sources against Ma-

condo injections.

Method Mac vs. Mac EI vs. Mac SLC vs. Mac Nseep vs. Mac

SAX 98.88± 0.67% 77.86± 0.28% 91.69± 0.49% 67.70± 0.23%

PTM 94.52± 6.16% 72.82± 2.75% 24.68± 8.71% 38.64± 2.99%

PCA 99.83± .16% 91.97± .1% 91.8± .09% 97.84± .51%

Correlation 98.7± .82% 94.08± .82% 92.37± 1.18% 83.39± .24%

L2 norm 92.53± 3.95% 87.71± 2.53% 81.38± 5.11% 75.06± 4.53%

MAX 92.37± 3.03% 84.78± 1.45% 80.08± 4.06% 70.75± 2.94%

PAA 92.62± 3.046% 84.52± 1.06% 79.74± 4% 71.74± 2.81%

4.5.1 Model Dataset

We verify our method with a dataset of thirty four injections with GC ×GC

pattern from different parts of the world. Of particular interest, there are fourteen

samples from the Macondo well in Gulf of Mexico, and three standard NISt samples

unrelated to Gulf of Mexico.

4.5.2 Discussion on the result

We have tested our proposed method using α = 10, w = 31 and εup = 0.4. We

set aside the first sample from the Macondo well as one the elements of D and test the

remaining dataset against it. As can be seen in Figure 4.6, the first thirteen samples

have a pretty high percentage of matches to the reference sample. These samples
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Table 4.2: The distance table between the SAX symbols.

Alphabet a b c d e f g h i j

a 0 0 0.19 0.57 1.06 1.63 2.34 3.24 4.49 6.55

b 0 0 0 0.1 0.34 0.7 1.18 1.84 2.82 4.49

c 0.19 0 0 0 0.07 0.27 0.59 1.08 1.84 3.24

d 0.57 0.1 0 0 0 0.06 0.25 0.59 1.18 2.34

e 1.06 0.34 0.07 0 0 0 0.06 0.27 0.7 1.63

f 1.63 0.7 0.27 0.06 0 0 0 0.07 0.34 1.06

g 2.34 1.18 0.59 0.25 0.06 0 0 0 0.1 0.57

h 3.24 1.84 1.08 0.59 0.27 0.07 0 0 0 0.19

i 4.49 2.82 1.84 1.18 0.7 0.34 0.10 0 0 0

j 6.55 4.49 3.24 2.34 1.63 1.06 0.57 0.19 0 0

are actually from the Macondo well which shows that our method has successfully

worked. The three NIST samples are also shown in figure. As can be seen, they have

the same percentage of similarity to the reference sample. The 90% match line also

separates the Macondo samples from the others.



www.manaraa.com

80

CHAPTER 5
DETAILED ANALYSIS OF PEAK TOPOGRAPHY MAPS FOR

FORENSIC INTERPRETATION

5.1 Introduction

Comprehensive two-dimensional gas chromatography (GC × GC) provides

high-resolution separations across hundreds of compounds in a complex mixture,

thus unlocking unprecedented information for intricate quantitative interpretation.

We exploit this compound diversity across the (GC × GC) topography to provide

quantitative compound-cognizant interpretation beyond target compound analysis

with petroleum forensics as a practical application. We focus on the (GC × GC)

topography of biomarker hydrocarbons, hopanes and steranes, as they are generally

recalcitrant to weathering. We introduce peak topography maps (PTM) and topog-

raphy partitioning techniques that consider a notably broader and more diverse range

of target and non-target biomarker compounds compared to traditional approaches

that consider approximately twenty biomarker ratios. Specifically, we consider a

range of 33-154 target and non-target biomarkers with highest-to-lowest peakratio

within an injection ranging from 4.86-19.6 (precise numbers depend on biomarker

diversity of individual injections). We also provide a robust quantitative measure for

directly determining match between samples, without necessitating training datasets.

We validate our methods across thirty-four (GC × GC) injections from a diverse

portfolio of petroleum sources, and provide quantitative comparison of performance

against established statistical methods such as principal components analysis (PCA).
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Our dataset includes a wide range of samples collected following the 2010 Deep-

water Horizon disaster that released approximately 160 million gallons of crude oil

from the Macondo well. Samples that were clearly collected following this disaster

exhibit statistically significant match (99.55 ± 0.96)% using PTM-based interpreta-

tion against other closely related sources. PTM-based interpretation also provides

higher differentiation between closely correlated but distinct sources than obtained

using PCA-based statistical comparisons. We provide a peak-cognizant informational

framework for quantitative interpretation of GC × GC topography. Proposed topo-

graphic analysis enables GC × GC forensic interpretation across target petroleum

biomarkers, while including the nuances of lesser-known non-target biomarkers clus-

tered around the target peaks. This allows potential discovery of hitherto unknown

connections between target and non-target biomarkers [56].

5.2 Background

Comprehensive two-dimensional gas chromatography (GC × GC) provides

high-resolution separation across hundreds, sometimes thousands, of crude oil hy-

drocarbons, thus unlocking unprecedented information for intricate quantitative in-

terpretation. The broad objective of this work is to exploit this rich compound

diversity and provide compound-cognizant quantitative interpretation of (GC ×GC)

peak topography that bridges the gap between target-driven analysis and statistical

methods. We propose peak topography maps that extend individual (GC×GC) peak

analysis beyond the well-known target peaks that dominate the (GC × GC) image,
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and present techniques for interpreting (GC×GC) topography that provide nuanced

quantitative peak-based comparisons between (GC ×GC) images. While we present

our results in the context of petroleum forensics as a practical application of interest,

the scope of our work applies generally to quantitative (GC×GC) interpretation and

as such, goes beyond the stated application.

A key distinction of our technique against multi-variate statistical methods [57]

is compound-cognizant interpretation that preserves the identity of individual target

peaks while extending the scale of peak-level interpretation to all peaks, target and

non-target, within the (GC × GC) topography. This allows nuanced (GC × GC)

distinction between closely related yet different complex mixtures, e.g. crude oil from

neighboring oil sources, which share the regional fingerprint, and therefore, difficult

to differentiate robustly using purely statistical methods.

5.2.1 Current state-of-the art in chromatographic interpretation: challenges and

opportunities

Many separation technologies routinely filter out non-target analytes, thus

eliminating possibility of understanding their connection to dominant target analytes

in an environmental sample. More comprehensive datasets recording the joint con-

tributions of target and non-target analytes may be enabled through comprehensive

two-dimensional gas chromatography (GC×GC), liquid chromatography (LC×LC),

mass spectrometry (MS) and combinations thereof. However, despite the informa-

tional richness of these comprehensive datasets, non-target analytes are traditionally
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ignored in sample analysis in preference to peakratio comparisons between the target

chemicals. Although non-target chemicals are empirically considered in the chemo-

metric literature, their role is typically limited to the major statistical loadings in

multi-variate distributions [58–60]. Thus, current state-of-the-art in environmental

forensics and analytical chemistry are broadly divided into two complementary ap-

proaches:

• Target-based analysis [59–70]: Focuses on the target chemicals (well-known

hopanes, steranes, diasteranes in petrochemicals) that dominate the analyti-

cal landscape as the major peaks in a chromatogram or a GC-MS image. This

includes statistical methods employed towards target-based analysis [68,71].

• Target-agnostic analysis [72–78]: Statistical pattern-recognition techniques that

analyze comprehensive separation datasets using different forms of multi-variate

analysis.

Table 5.7 (in Section 5.15) provides a point-by-point comparison between the two

approaches in the context of environmental forensics.
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5.2.2 Petroleum forensics using GC ×GC separation of crude oil samples

Figure 5.1: a. The three-dimensional view of GC × GC image of crude oil pre-spill

sample from Macondo well, site of Deepwater Horizon spill disaster, Gulf of Mexico,

2010. b. The two-dimensional view of a.c. Detailed topography of biomarker region

(hopanes and steranes) marked as red box in b.Target biomarkers are labeled and

itemized in Table 5.6.
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Reliable fingerprinting of petroleum and its weathered products has been an

important field of study in the last four decades [58–66, 79–87]. Forensic analysis

techniques fingerprinting crude oil samples in the ocean typically interpret the GC ×

GC peak profiles of biomarker hydrocarbons (hopanes and steranes), as they are

generally recalcitrant against environmental weathering [60, 63, 67, 81–87]. Figure

5.2.2 shows the GC×GC biomarker topography of a pre-spill crude oil sample taken

from the Macondo well, source of the Deepwater Horizon disaster, spanning over a

hundred compounds across a relative scale of 1 to 14.53 between the lowest and highest

summits (peaks occupying lowest 5% of the GC × GC peak magnitude profile were

rejected as baseline noise). Traditional analysis employs approximately forty target

biomarker compounds (refer to labeled compounds in Figure 5.2.2 and Table 5.9 (in

Section 5.9)), which occur as major peaks dominating the GC×GC topography, and

about twenty well-known peak ratios [81] based on these target compounds.

5.2.3 Background motivation: Peak-cognizant interpretation beyond target

biomarkers

Target biomarkers are generally abundant within a sample, robust to chro-

matographic variability, and therefore, provide a well-established basis to compare two

oil samples [59,60,62,63,81]. However, the interpretation power of target analysis can

be magnified significantly if we harness the full informational potential GC × GC:

combining the well-known characteristics of target biomarkers (major peaks) with

the lesser known nuances of non-target biomarkers (minor peaks), which occupy the
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breadth of the intricate GC ×GC topography. More recently, chemometric interpre-

tations of GC×GC datasets have been proposed that adopt a multi-variate statistical

approach to forensic interpretation [71–74,88–90]. While these statistical approaches

exploit the data variance of the GC ×GC topography beyond the target peaks, they

are typically agnostic of the target biomarkers and the dominant role they play in

forensic interpretation [59, 60, 62–66, 81]. We harness the rich compound diversity

across the GC × GC biomarker (hopanes and steranes) topography to provide po-

tentially transformative compound-cognizant interpretation beyond target compound

analysis. Our objective is to extend the scope of target-centric standards [64–66] to

include non-target biomarkers within a compound-cognizant framework, and thus

bridge the gap between target-based forensics (e.g. [59, 60, 62, 63, 81] and references

therein) and existing target-agnostic statistical approaches [71–73,88–90]. We achieve

source-specific and regional fingerprints by mapping connections between target and

non-target biomarkers within the GC×GC topography. While the established target

peaks dominate forensic interpretation, and can be individually identified in the to-

pography map proposed, the unutilized contribution of the minor (non-target) peaks

(e.g. the 73 unlabeled non-target peaks in Figure 5.2.2) are also employed to distin-

guish closely related samples. Furthermore, we propose partitioning techniques that

enable discovery of peak clusters connecting known targets to unknown non-target

biomarkers, and thus derive common regional characteristics of petroleum-rich areas.



www.manaraa.com

87

5.2.4 Key innovation and contributions

Our motivation in this work is to achieve robust forensic distinction between

closely related oil sources by utilizing rich peak information diversity in two-dimensional

gas chromatography. In this thesis, we significantly enhance seminal ideas introduced

in [54] through extensive data validation. Specifically, we validate our peak topo-

graphic methods across a set of thirty-four GC ×GC injections from a diverse port-

folio of petroleum sources, including a wide range of samples collected from the Ma-

condo well, the source of the Deepwater Horizon disaster in the Gulf of Mexico, April

2010. The Macondo samples exhibit statistically significant match (99.55 ± 0.96%)

against other closely related sources (refer Table 5.1). We build upon peak mapping

and partitioning techniques introduced in [54] that combine source-specific and re-

gional characteristics manifested through the GC × GC topography of neighboring

oil sources. We also provide a robust quantitative measure for directly determining

match between samples, without necessitating training datasets. This is a key dis-

tinction against supervised learning techniques [75–78] that necessitate strong ground

truths derived from large training databases that may be difficult to avail in the event

of localizing a natural seep or surveying connectivity between newly discovered oil

prospects. Our contribution is summarized in three novel concepts introduced in [54]

and expanded through extensive data validation in this thesis:

• Peak topography map (PTM), a feature representation that collectively captures

GC ×GC topography derived from the GC ×GC chromatogram,

• Topography partitions, a threshold-based partitioning technique for discovering
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source-specific and regional characteristics, and

• cross-PTM analysis, mathematical technique for directly determining match

between two GC ×GC separations without needing training datasets.

A natural outcome of PTM-based analysis is the discovery of topographic

clusters (closely eluting groups of target and non-target biomarkers), which are key

to understanding the regional and source-specific fingerprint.

5.3 Experimental Data Description

Table 5.5 (in Section 5.8) lists the thirty-four injections along with the cor-

responding details on sample identity and geographic origin. The injections may be

classified into three groups:

• Fourteen injections clearly originating from the Macondo well, source of the

Deepwater Horizon disaster;

• Three injections from non-Macondo well oil originating from three different

sources in the Gulf of Mexico; and,

• Seventeen injections from diverse oil sources outside the Gulf of Mexico region.

In particular, injections 1 and 2 correspond to independent injections of a pre-

spill sample taken directly from the Macondo well during normal operations before

the disaster; injection 3 corresponds to a surface slick sample from the Macondo well

collected after the spill; injection 4 is a post-spill sample collected directly from the

broken riser pipe on June 21, 2010 [84, 91]; injections 5 through 14 correspond to
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ten separate oil samples that were obviously from the Macondo well spill collected

from grass blades along the Louisiana Gulf of Mexico coast; injections 15 and 16 are

from two other crude oil sources from northern Gulf of Mexico and were collected

before the Deepwater Horizon disaster, and injection 17 is collected from a natural oil

seep in the Gulf of Mexico in 2006. The remaining injections correspond to distant

sources unrelated to the Gulf of Mexico. For example, injections 18, 19 and 20

are independent consecutive injections of the National Institute of Standards and

Technology (NIST) Standard Reference Material 1582 (its characteristics suggest it

is derived from Monterey Shale and likely a California crude similar to injection 21).

5.3.1 GC ×GC-Flame ionization detector (FID) analysis

The samples were analyzed on a GC ×GC-FID system equipped with a Leco

dual stage cryogenic modulator installed in an Agilent 7890A gas chromatograph

configured with a 7683 series split/splitless auto-injector, two capillary columns, and

a flame ionization detector. Samples were injected in splitless mode, and the split

vent was opened at 1.0 minutes. The inlet temperature was 300 ◦C. The first-

dimension column and the dual stage cryogenic modulator reside in the main oven

of the Agilent 7890A gas chromatograph. The second-dimension column is housed

in a separate oven installed within the main GC oven. With this configuration, the

temperature profiles of the first-dimension column, dual stage thermal modulator,

and the second-dimension column can be independently programmed. The first-

dimension column was a Restek Rtx−1, (30 m, 0.25 mm I.D., 0.25 µm film thickness)



www.manaraa.com

90

that was programmed to remain isothermal at 45 ◦C for 10 minutes and then ramped

from 45 to 315 ◦C at 1.2 ◦C min−1. Compounds eluting from the first dimension

column were cryogenically trapped, concentrated, and re-injected (modulated) onto

the second dimension column. The modulator cold jet gas was dry nitrogen, chilled

with liquid nitrogen. The thermal modulator hot jet air was heated to 45 ◦C above

the temperature of the main GC oven (thermal modulator temperature offset = 45

◦C). The hot jet was pulsed for 1.0 second every 12 seconds with a 5.0 second

cooling period between stages. Second-dimension separations were performed on a

SGE BPX50 (1 m, 0.10 mm I.D., 0.1 µm film thickness) that remained at 75 ◦C for

10 minutes and then ramped from 75 to 345 ◦C at 1.2 ◦C min−1. The carrier gas was

hydrogen at a constant flow rate of 1.1 mL min−1. The FID signal was sampled at

100 data points sec−1.

5.3.2 Methods

We introduce the Peak Topography Map (PTM) representation of GC ×GC

data as an informational method that characterizes the peak information across the

GC ×GC biomarker topography as a connected graph. Wherever applicable in this

work, peak refers to a single second-dimension peak, and GC ×GC region of interest

(ROI) refers to the biomarker sub-region (hopanes and steranes) of a two-dimensional

gas chromatogram.
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5.3.2.1 Peak Topography Map (PTM) Representation

PTM is a scalable node-based representation computed over a pre-selected

GC × GC ROI representing the biomarker compounds. The PTM representation is

scalable because: (i) PTM computation can be scoped to a smaller sub-region within

the chosen GC ×GC ROI, and (ii) PTMs computed across disjoint GC ×GC ROIs

can be combined to construct the PTM across the union of these regions, e.g. PTMs

for the hopanes and steranes can be computed separated and then combined to give

the PTM over both hopanes and steranes. Each PTM consists of a two-dimensional

node structure that preserved peak characteristics, e.g. peak height, peak location

and order of elution.

Mathematically, each peak collapses into a single PTM node that stores two

attributes: (i) the magnitude at the peak summit, and (ii) peak location. We represent

information at a PTM node (denoted as η) with the value assignment η = {p,m, n},

where p denotes the peak summit value, and m and n respectively denote the first

and second dimension retention time indices for the particular peak in the GC ×GC

image.

The nodes are stored as an ordered two-dimensional matrix, with the first

dimension coinciding with the first dimension retention time indices and the second

dimension storing the PTM nodes in the consecutive order of elution of peaks along

the second dimension. Thus the [q,m]-th element of the PTM matrix with node

value η = {p,m, n} stores the qth compound with peak height p, eluting along the

second dimension with peak location [n,m] in the GC × GC image. The number
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of columns N of the PTM matrix represents the total number of first dimension

modulations for the GC ×GC ROI. The number of rows Q represents the maximum

number of peaks eluting along the second dimension within the GC ×GC ROI. The

maximum number of peaks is computed across all second dimension indices within

the GC ×GC ROI. A PTM matrix column with fewer peaks than Q stores the PTM

nodes in ascending order of peak locations, and populates the remaining entries with

zeros to denote absence of a peak in those PTM nodes. We will henceforth refer

to these entries in the PTM matrix that do not have a peak as blank nodes. To

compute the PTM of a GC ×GC ROI we normalize the PTM against the maximum

value of the peaks. This normalization nullifies the effect of variable signal strengths

between different injections by measuring all peak heights relative to the maximum

signal strength within each GC × GC ROI. We locate all peaks within this ROI by

employing a gradient-based maxima search (ref. Section 5.12). Peaks that fall below

5% of the maximum peak height within the GC × GC ROI are rejected as baseline

noise. Mathematically, suppose the nth column of a GC ×GC image has κn number

of peaks. The amplitudes and the locations of the peaks in this column can be stored

in Peakn = {p1,n, p2,n, . . . , pκn,n} and Locn = {m1,n,m2,n, . . . ,mκn,n}. We construct

the (l, n)th element of its PTM representation matrix as:

PTM [l, n] =


pl,n + j ×ml,n if 1 ≤ l ≤ κn

0 if l > κn

(5.1)

In other words, if l corresponds to a peak location along the nth column of
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the GC × GC image, then the (l, n)th node of the PTM is a complex number with

its real part as the amplitude of the peak and the imaginary part as its location.

In case l does not correspond to a peak, (l, n)th node will be zero. Therefore, the

problem of comparing two GC × GC image, like Itest and Iref will turn into the

problem of comparing the nodes at the same location in their PTM representation

matrices. Figure 5.2 provides a visual representation of PTM computation for two

crude oil samples from the Gulf of Mexico (injections 1 and 16 in Table 5.5). Figure

5.3 shows the PTM corresponding to Figure 5.2.2, with the thirty-eight target PTM

nodes labeled for identification with the target compounds in Figure 5.2.2. We note

that the target compounds align according to their order of elution along the second

dimension rather than absolute coordinates by design, thus rendering them robust

against variability. The Procedure (in Section 5.10) details computational methods

for ensuring PTM nodes compared across injections store the same compound within

a pre-selected variability threshold.
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Figure 5.2: Sep-by-step PTM construction. Target biomarkers are labeled and item-

ized in Table 5.6. Total number of detected biomarker peaks (target and non-target)

= 111, after removing peaks occupying lowest 5% of the GC × GC peak magni-

tude profile as baseline noise. Range of considered peak summits (highest:lowest) =

14.53:1.
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5.3.2.2 Topography Partitioning: Direct GC ×GC comparisons based on

aligned PTMs

We introduce topography partitioning as a visual quantitative informational

method to facilitate direct comparison between two GC × GC ROIs. Topography

partitions provide intricate cross-comparison between oil samples highlighting nuances

of their biomarker topographies. Topography partitions also form the basis for the

cross-PTM score: a novel threshold-driven quantitative metric that provides a single

numerical score for determining whether the two samples are a match. The key idea

is to partition the GC ×GC biomarker topography of a test sample based on which

peaks, target and non-target, match against that of a reference sample using their

respective PTM representations.

5.3.2.2.1 Mathematical computation of topography partitions

The peak-level match is determined using a peak ratio metric (ref. Equation

in the procedure in 5.10). This peak ratio metric is calculated at the granularity

of individual PTM nodes and assessed against a pre-selected threshold to decide a

match between the test and reference samples for a given compound. These individual

match assessments are then conducted across peak profiles spanning the GC × GC

ROI.
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Figure 5.3: a. The three-dimensional view of GC × GC image of crude oil sample

from Eugene Island, Gulf of Mexico, about 50 miles southwest of Macondo well, the

oil source of the Deepwater Horizon disaster. b. The two-dimensional view of a. c.

Detailed topography of biomarker region (hopanes and steranes) marked as yellow box

in b.Target biomarkers are labeled and itemized in Table 5.6. d. PTM representation

of Figure a and b. Thirty-eight target biomarkers are allocated to the numerically

labeled PTM nodes.
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Figure 5.4: Topography partitioning of injection 15 (Eugene Island, Gulf of Mex-

ico) with reference injection 4 (post-spill sample taken from the broken riser pipe of

Macondo well) for peakratio threshold a. τ = 1.3 and b. τ = 1.65.

The topography is partitioned into similar and dissimilar peaks that meet or

fall below the match threshold. The percentage of peaks in the similar topography

generates the cross-PTM score. The two partitions are called similarity and dissimi-

larity partitions, where similarity indicates the partition of the test GC×GC ROI that

matches that of the reference sample, and vice versa. Procedure of cross-PTM score

provides a flowchart for determining the topography partitions of a test GC × GC

ROI against a reference using PTM nodes. In the procedure of cross-PTM score, we

have used a similarity criterion ρ between two nodes at the same location. As known,

the function max(a, a−1) has a value greater than or equal to one, with a value of one
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when a = a−1 . In our case, a will be the ratio of the peaks at one location(a =
pref
ptest

).

In case a = a−1 = 1 (the peakratio is unity), the peaks at that location have ex-

actly the same amplitudes(pref = ptest) which we call them as equivalent nodes. But

because of the baseline noise, column bleed and other chromatographic variability,

the amplitudes of peaks may not be identical during the process of constructing the

GC ×GC image, and this requires a need to consider two peaks as being equivalent

even if the value of the function max(·) deviates a little bit from unity. We then

define a peak-threshold metric with a relaxing parameter ε which takes care of the

noise deviation as following:

τ = 1 + ε, ε > 0 (5.2)

And claim two peaks as equivalent if the function for those peaks is less than

or equal to τ(e.g. in Table 5.1 the results are shown for τ = 1.65). Figure 5.4 illus-

trates the topography partitions of two Gulf of Mexico injections, which originate in

distinct sources, but share regional characteristics that are captured in the similarity

partitions. Similarity partition represents the common characteristics between the

GC×GC topography between the two injections. Dissimilarity partition iterates the

differences between the two GC × GC topographies. Therefore, topography parti-

tions provide a threshold-dependent separation between the regional characteristics

and source-specific features of a crude oil fingerprint.

When the peakratio τ is increased, less peaks between the injections are clas-

sified as dissimilar, as evidenced in Figures 5.4(a) and 5.4(b). We also note from
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Figure 5.4(a) and 5.4(b) that both similarity and dissimilarity partitions consist of

clusters of target (major peaks) and non-target (minor peaks) biomarkers. Thus

the topography partitioning method allows discovery of important clusters of un-

known non-target biomarkers around known target biomarkers that dominate the

source-specific and regional fingerprints. We denote the GC × GC ROI of the test

and reference samples as Iref and Itest, the corresponding PTM matrices as PTMtest

and PTMref , and the PTM nodes as ηtest and ηref respectively. To compare the

PTMs, we follow the algorithm procedure of cross-PTM score. We denote the mod-

ified PTMtest procedure of cross-PTM scoreafter node insertions for alignment with

PTMref as PTMtest,aligned(PTMref ) . The topography partitions are set up as a

threshold classification of the test GC ×GC ROI into two disjoint classes:

• Similarity partition: Portions of Itest corresponding to test PTM nodes (orig-

inally present or inserted) that meet the peakratio threshold τ (refer Step 3,

procedure of cross-PTM score). We denote the similarity partition as Itest,similar.

• Dissimilarity partition: Portions of Itest corresponding to test PTM nodes (orig-

inally present or inserted) that does not meet the peakratio threshold τ (refer

Step 3, procedure of cross-PTM score). We denote the dissimilarity partition

as Itest,dissimilar.

We note that either partition not only includes the peak summits, but also

the region under a peak. In the scenario where a node was inserted in the test PTM

(refer Step 2b: Case 2, procedure of cross-PTM score) the Itest partition will include
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the same peak sub-region corresponding to the equivalent peak region of ηref , the ref

PTM node.

5.3.2.2.2 Cross-PTM score calculation

The cross-PTM score, denoted as Sτ (Itest, Iref ), is a PTM-based threshold-

driven numerical comparison between the test and reference GC ×GC ROIs. Math-

ematically, it is derived as the percentage of nodes in PTMtest,aligned(PTMref ) that

meet the threshold τ and therefore, belong in Itest,similar, i.e.,

Sτ (Itest, Iref ) =
|ηtest ∈ PTMtest,aligned(PTMref ) : ρ(m,n) ≥ τ |

|ηtest ∈ PTMtest,aligned(PTMref )|
(5.3)

Figure 5.4 illustrates topography partitioning for injection 4 (post-spill sample

from Macondo well) in Table 5.5 using injection 15 (from Eugene Island, Gulf of

Mexico) as the reference for direct cross-PTM comparison for different thresholds.

We note that the higher value of τ selects more of the topography into the similar

partition, as is to be expected.

5.4 Results and discussion

PTMs derived from GC × GC biomarker ROIs corresponding to thirty-four

injections (refer Table 5.5 for details on origin) were compared pairwise against each

other based on the threshold-based cross-PTM score. The thirty-four injections com-

pared span across thirty-one distinct oil samples that originate from nineteen distinct

sources. Fourteen samples originate from the Macondo well, source of the Deepwater
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Horizon disaster, including two pre-spill samples, and twelve post-spill samples col-

lected at diverse locations after the Deepwater Horizon disaster, e.g. the plume at

the base of the Macondo well, grass blades on the Louisiana coastline, and oil slicks

collected kilometers away from the disaster site (details provided in Table 5.5). These

samples were collected in areas well documented [67, 81] to be heavily contaminated

by the Deepwater Horizon disaster compared to the background.

We evaluate the cross-PTM score as a function of the peakratio threshold

across a diverse selection of injection pairs. We examine the robustness of intra-class

match between injections of same origin against inter-class distinction between injec-

tion pairings from different origins. Specifically, we compare the fourteen Macondo

injections (injections 1-14 in Table 5.5) against each other and against other sources

within and outside the Gulf of Mexico region. We also compare the strength of Ma-

condo vs. Macondo match against three other Gulf of Mexico injections (injections

15-17 in Table 5.5): (i) Eugene Island, (ii) Southern Louisiana Crude (SLC) and

(iii) a Gulf of Mexico natural seep. Three consecutive injections from a non-Gulf of

Mexico NIST sample originating in the Monterey area are also analyzed as an ideal

intra-class case study, independent of any co-provenance bias with the Gulf of Mexico

samples.

Figure 5.4 plots the average cross-PTM score as a function of peakratio thresh-

old across important comparison classes. Figure 5.17 in Section 5.13 provides the

statistical performance of the cross-PTM score for matching Gulf of Mexico injection

pairs, with emphasis on distinguishing the fourteen Macondo injections against non-
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Macondo Gulf of Mexico injections. We note that consistently the intra-class match

between Macondo injections is statistically higher than the inter-class score between

Macondo and other Gulf of Mexico injections. In Figure 5.6, the cross-PCA score as

a function of the number of principle components have been plotted. The statistical

performance of the cross-PCA score for matching Gulf of Mexico injection pairs has

been shown in Figure 5.18 in Section 5.13.

Figure 5.5: Mean cross-PTM scores plotted as a function of the peakratio threshold

τ for important intra-class (same source) and inter-class (distinct sources) compar-

isons. Each plot shows the average cross-PTM score taken over all possible pairings

of injections for the corresponding comparison class (e.g. NIST vs. NIST plot shows

the average cross-PTM score for three possible parings between the three NIST in-

jections).
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Figure 5.6: Mean cross-PCA scores plotted as a function of the peakratio threshold

τ for important intra-class (same source) and inter-class (distinct sources) compar-

isons. Each plot shows the average cross-PCA score taken over all possible pairings

of injections for the corresponding comparison class (e.g. NIST vs. NIST plot shows

the average cross-PCA score for three possible parings between the three NIST injec-

tions).

5.4.1 Best-case scenario for same-source match: NIST vs. NIST

To provide a neutral baseline for best-case performance, we compare three

NIST injections (injections 19-21 in Table 5.5), all of which were taken from the same

sample of non-Gulf of Mexico origin. The NIST injections were run consecutively

under practically identical experimental conditions. We observe in Figure 5.4 that

the NIST vs. NIST cross-PTM score rapidly reaches 100% match with increasing
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peakratio threshold. This is to be expected as the GC ×GC biomarker topographies

of injections run consecutively from the same sample are expected to be very similar, if

not identical. In reality, cross-comparisons for source determination are made between

injections from different samples that may have same origin but are not consecutive

runs from the same physical sample. GC×GC topographies for same-source injections

from different samples are therefore, bound to exhibit more variation due to shifting

of minor peaks, co-elution of different biomarkers, as well as baseline variability. Thus

we expect the NIST vs. NIST cross-PTM performance to provide an idealized upper

bound to measure cross-PTM score performance.

5.4.2 Comparison between Macondo injections from fourteen distinct samples

The fourteen Macondo injections exhibit a range of 105-131 detected peaks

spanning target and non-target GC×GC biomarkers with highest-to-lowest peakratio

within an injection ranging from 14.27-16.22. Majority of the peaks considered are

non-target biomarkers (only 38 target biomarkers present among over 100 biomarkers

considered) and thus offer a nuanced cross-PTM interpretation that accounts for

both target and non-target contributions to an oil fingerprint. From Table 5.1 we

observe that the inter-class match between Macondo injection pairings is well within

statistical range, i.e., within one standard deviation (σ) of the statistical mean (µ),

for robust (µ± σ) differentiation against other Gulf of Mexico injections.

Specifically, at the choice of τ = 1.65 the Macondo injections exhibit (99.55±

0.96%,Median : 100%) intra-class match, which is sufficient to distinguish against
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inter-class cross-PTM score with other Gulf of Mexico injections.

This choice of peakratio, τ , was empirically selected at τ = 1.65 which was

observed to give the best distinguishment between the Macondo and other Gulf of

Mexico sources.

Table 5.1: Percentage match between different Gulf of Mexico sources against Ma-

condo injections for PTM with the optimal choice of τ = 1.65 and for PCA with two

principle components.

Method Mac vs. Mac EI vs. Mac SLC vs. Mac Ns vs. Mac

PTM 99.55%± 0.96% 90.66%±2.096% 71.28%±11.03% 60.12%±3.064%

PCA 99.76%± 0.26% 91.98%± 0.14% 91.71%± 0.24% 98.01%± 0.51%

5.4.3 Comparison between Gulf of Mexico injections and injections outside the

region

We observe from Table 5.1 and Figure 5.4 that using (µ ± σ) differentiation

the Gulf of Mexico injections are robustly differentiated against each other and also

exhibit considerable distinction against sources outside the Gulf of Mexico region. In

conclusion, we observe that the mean and median performance of the cross-PTM score

is highly robust in source distinction and worst-case performance is sensitive to choice

of peakratio τ and number of detected peaks. Thus, the PTM approach combines

target and non-target analysis to address multi-layered forensic questions regarding
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whether the injections are from the same sample, from different samples of same

origin, from samples of different origin but similar locale, and so on as demonstrated

above in our analysis based on a unique and diverse set of oil samples.

5.4.4 Differentiation between PTM and PCA in scope and performance

As indicated earlier the proposed methods in chemometrics such as PCA can

be applied towards quantitative GC×GC interpretation. However, purely statistical

methods limit interpretation to peak aggregates, and as such, cannot provide peak-

level interpretation. Therefore, by design PCA and similar multivariate statistical

methods are compound-agnostic and cannot provide quantitative comparison based

on relative compound concentrations in two complex mixtures. In particular, PCA

analysis projects the GC ×GC image along the main directions of data variance and

therefore, is well-suited to application scenarios where the incentive is dimensionality

reduction and compound-agnostic comparison between weakly correlated sources.

The primary aim of this work is to provide quantitative peak-level interpre-

tation beyond target biomarkers, with the end goal of robust differentiation between

petroleum sources that share regional commonalities, and therefore, have highly cor-

related GC×GC fingerprints. So, even minor nuances between two sources can carry

important information to help us separate them once they are extracted from two

closely located regions.

This differentiation between the two interpretation methods can be easily seen

in Table 5.1, where We compare the best performance for differentiating between
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GoM oil sources using PTM ad PCA cross-comparison scores. The optimal parameter

choice for each method is provided (number of components for PCA and peakratio

threshold for PTM).

The intra-class match (Macondo vs. Macondo) is slightly higher using PCA

than PTM but the inter-class differentiation (Macondo vs. other local sources) is

significantly more robust using PTM over PCA. This is to be expected as PCA is

biased towards the common regional fingerprint of the Gulf of Mexico locale, which

constitutes the dominant component of data variance of GC × GC separations of

crude oil collected in this region.

Mathematically, we can perform PCA cross-comparison between these corre-

lated courses based on the non-dominant components, but these are typically vul-

nerable to baseline noise and other uncertainties, and as such, not reliable for robust

source differentiation. This is evident in Figure 5.6, where increasing the number of

components increases gap between inter-class scores but also reduces the intra-class

(Macondo vs. Macondo) match. On the other hand, cross-PTM match scores (Fig-

ure 5.4) consistently provide high intra-class and considerably lower inter-class match

scores over a wide range of the peakratio threshold.

In summary, PCA enables statistical distinction between two GC ×GC sepa-

rations which have been extracted from geologically unrelated sources far apart from

each other, but falls short of robust differentiation between strongly correlated sources

located within the same region. PTM analysis provides peak-cognizant quantitative

interpretation that can robustly differentiate between GC ×GC separations between
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Figure 5.7: Cross-PTM score for the petroleum dataset.

strongly correlated but distinct sources that share the regional fingerprint.

We have also plotted the cross-PTM score for the thirty-four injections against

each other in Figure 5.7. As can be seen the diagonal elements are 100% match,

because samples are being tested against each other. The first fourteen samples have

Macondo samples which their mean and the standard deviation is 99.55± .96 which

is a pretty high match. The NIST samples have the perfect match of 100% which has

been shown in the figure.
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5.5 Robust Peaks

Due to the noise, experimental errors and the environmental events the foren-

sics undergo some deviation. So, if we have extracted two petroleum sources from

the same geographical region, there might be some difference in their patterns. That

would be nice to develop a method to see if there are some peaks that have remained

the same in the sample extracted from the same region. These peaks will not change,

therefore we call them robust peaks. Hence, we say the main role of a sample to be

called to be from a specific region is on the shoulders of some of the peaks, and not

all.

Figure 5.8: Statistical evaluation of match between the Macondo and non-Macondo.
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The statistical evaluation of match between the Macondo and non-Macondo

have been shown in Figure 5.8. The maximum amount of differentiation between

the Macondo versus Macondo and Macondo versus Eugene Island occurs between the

two bars shown in the Figure. So we can set the parameter Mp introduced in Section

3.3.2 somewhere between the points shown in Figure 5.8. In order to recap, the block

diagram shown in 5.9 depicts the procedure to construct the τ − map for a family

of images from one specific geographical region. We first set a reference image as

the representative sample of the family. Then, we go over each of the peaks of the

reference image and compute the cross-PTM score for the local neighborhood around

the peak and save the minimum τ in which the mean cross-PTM score for that class

is at least Mp. In case, there is a missing peak in at least one of the images from

the family, the corresponding peak should be claimed as non-robust peaks and its τ

will be saved as τ = −1. In case there is peak in all of the images but the mean

cross-PTM score for that peak is less than Mp will be a τ out of the feasible set of

τ ’s. We call all of the peaks in which their corresponding τ is any number in the valid

range ,and of course not equal to -1, robust peaks. In this work,the valid range of τ ’s

is 1 ≤ τ ≤ 2.
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Figure 5.9: The block diagram of the τ −map image introduced in 3.3.2.

Figure 5.10 shows the τ −map image using the first pre-spill sample from the

Macondo well with the other members of the family from Macondo.

As shown in Figure 5.10 most of the peaks in the reference image need τ = 1.3

to be able to have the percentage of match of at least Mp = 94%. There is just one

peak at the location of (x0, y0) = (72, 133) which does not exist in all of the samples,

hence its corresponding τ will be −1.

In figure 5.11 the histogram of the peaks have been shown where the left image

relates to the first pre-spill Macondo sample and the right one relates to one of the

post-spill sample, grass blade. As can be seen the number of the peaks having τ = 1.3

in the first sample is 49 and that of the grass blade is 41. The total number of peaks

in the first and the grass blade samples are 111 and 106, respectively. Therefore, for

the first pre-spill sample 49/111 = 44.14% of the peaks agree that the appropriate τ

is 1.3, where in the grass blade case this number is 41/106 = 38.68%. It shows that

the agreement between the peaks of pre-spill is more than the post-spill sample, as

expected. Although, having 5 more peaks has led the first pre-spill sample to have a

non-robust peak.



www.manaraa.com

112

Figure 5.10: τ − map image for the Macondo well family of images. The figure on

the top shows the target peaks selected by the chemists in the lab.
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Figure 5.11: Histogram of the number of peaks occurring at different values of τ for

a pre-spill (left) and post-spill (right) Macondo sample.

The values of the means are shown in Table 5.2. As can be seen the highest

average of number of peaks occurs at τ = 1.3. Remember, we chose Mp = 94% where

the maximum differentiation occurred and the corresponding τ was 1.3. Here, we

have come to a very important observation that most of the peaks agreed that in

order to have a percentage of match of at least Mp, they need τ = 1.3 and the whole

image also needed this value for having the percentage of match of Mp = 94%.
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Figure 5.12: Histogram of the average number of peaks occurring at different values

of τ .
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Table 5.2: Average number of peaks as a function of τ .

Peak NO. τ Average number of points

1 -1 0.3571± 0.4972%

2 1.2 13.2143± 3.3092%

3 1.25 30± 3.8829%

4 1.3 45.2143± 3.5121%

5 1.35 12.0714± 2.4326%

6 1.4 8.2143± 1.9682%

7 1.45 0.0714± 1.0995%

8 1.5 1.3571± 1.2774%

9 1.55 3.6429± 0.9288%

10 1.65 0.0714± 0.2673%

11 1.7 0.0714± 0.2673%

12 1.75 0.7857± 0.4258%

13 1.8 0.1429± 0.5345%

14 2 0.0714± 0.2673%

15 2.5 1.5714± 1.4525%

Where τ = −1 corresponds to the case where there is at least one figure in

which there is a missing peak. We have plotted the out-of-range τ by τ = 2.5.
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5.6 Applying PTM on Breastmilk Dataset

The breastmilk dataset has been provided by Dr. Hans Lehmler and Iza

Korwel where the information regarding the dataset is given in Table 5.3. The result

of applying PTM on the dataset has been shown in Table 5.4. As can be seen the

PTM method performs reasonably well in distinguishing the samples from the same

family.

Table 5.3: Breastmilk Dataset Sheet

Injection

Number

Sample name Sample Type

1 0REF03 milk reextracted

2 A006 milk

3 B013 milk

4 B014 milk

5 C022 milk

6 C023 milk

7 D045 milk

8 D049 milk

9 D052 milk

10 D059 milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

11 E086 milk

12 hexane1 hexane

13 hexane2 hexane

14 BLANK05 blank

15 BLANK06 blank

16 NIST01 NIST reference mate-

rial

17 OPR03 OPR

18 REF03 authentic standard

19 SPREF03 spiked reextracted

milk

20 0REF02 milk reextracted

21 A003 milk

22 B010 milk

23 D035 milk

24 D046 milk

25 D051 milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

26 D060 milk

27 E072 milk

28 E074 milk

29 E076 milk

30 E083 milk

31 hexane3 hexane

32 hexane4 hexane

33 LRM02 reference material

34 BLANK03 blank

35 BLANK04 blank

36 OPR02 OPR

37 REFSTD0331 authentic standard

38 SPREF02 spiked reextracted

milk

39 0REF01 milk reextracted

40 A005 milk

41 A008 milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

42 B009 milk

43 D037 milk

44 D042 milk

45 D048 milk

46 E050 milk

47 E054 milk

48 E058 milk

49 hexane5 hexane

50 hexane6 hexane

51 LRM01 reference material

52 BLANK01 blank

53 BLANK02 blank

54 OPR01 OPR

55 REFSTD0323 authentic standard

56 SPREF01 spiked reextracted

milk

57 0REF04 milk reextracted
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

58 A002 milk

59 B011 milk

60 C024 milk

61 C027 milk

62 D047 milk

63 E062 milk

64 E063 milk

65 E065 milk

66 E066 milk

67 hexane7 hexane

68 LRM03 reference material

69 BLANK07 blank

70 BLANK08 blank

71 OPR04 OPR

72 REFSTD0507 authentic standard

73 SPREF04 spiked reextracted

milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

74 0REF05 milk reextracted

75 A001 milk

76 B016 milk

77 B017 milk

78 C020 milk

79 C025 milk

80 C028 milk

81 D054 milk

82 D033 milk

83 D035 milk

84 D039 milk

85 E061 milk

86 E069 milk

87 hexane9 hexane

88 LRM05 reference material

89 BLANK09 blank

90 BLANK10 blank
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

91 REFSTD0513 authentic standard

92 SPREF05 spiked reextracted

milk

93 A007 milk

94 B017 milk

95 C018 milk

96 C019 milk

97 D032 milk

98 D031 milk

99 D041 milk

100 D045 milk

101 D067 milk

102 D079 milk

103 D078 milk

104 hexane10 hexane

105 hexane11 hexane

106 LRM04 reference material

107 BLANK11 blank
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

108 OPR5 OPR

109 0REF06 milk reextracted

110 REFSTD0515 authentic standard

111 REFSTD0519 authentic standard

112 SPREF06 spiked reextracted

milk

113 hexane8 hexane

114 0REF08 milk reextracted

115 B010 milk

116 B012 milk

117 D032 milk

118 D044 milk

119 D050 milk

120 D052 milk

121 D053 milk

122 E068 milk

123 E077 milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

124 E084 milk

125 MBLNK15 blank

126 NIST02 NIST reference mate-

rial

127 OPR08 OPR

128 REFSTD0602 authentic standard

129 SPREF08 spiked reextracted

milk

130 MBLNK17 blank

131 MBLNK18 blank

132 0REF09 milk reextracted, dif-

ferent milk

133 A004 milk

134 B015 milk

135 C026 milk

136 D036 milk

137 D043 milk

138 E071 milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

139 E075 milk

140 E082 milk

141 hexane12 hexane

142 LRM08 reference material

143 OPR09 OPR

144 0REF07 milk reextracted, dif-

ferent milk

145 A003 milk

146 A005 milk

147 B009 milk

148 C027 milk

149 D031 milk

150 D037 milk

151 D048 milk

152 D055 milk

153 D057 milk

154 E064 milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

155 E070 milk

156 E081 milk

157 hexane13 hexane

158 LRM07 reference material

159 MBLK13 blank

160 OPR07 OPR

161 REF0527 authentic standard

162 SPREF07 spiked reextracted

milk

163 E079 milk

164 E073 milk

165 D040 milk

166 D034 milk

167 D029 milk

168 0REF10 milk reextracted, dif-

ferent milk

169 D057 milk
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Table 5.3 Continued.

Injection

Number

Sample name Sample Type

170 LRM09 reference material

171 MBLK19 blank

172 OPR10 OPR

173 REFSTD0709 authentic standard

174 SPREF09 milk

175 SPREF10 milk

176 E080 milk

177 E085 milk

178 REFSTD0709 authentic standard
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Table 5.4: Percentage match for breast milk dataset with τ = 1.7.

Sample Number of Samples µ± σ

Milk 99 96.84%± 4.97%

authentic standard 11 97.5%± 3.9%

Hexane 13 100%

OPR 9 99.31± .6%

Blank 16 99.63± .24%

NIST reference material 2 98.81%

reference material 8 96.77± 4.85%

spiked reextracted milk 10 97.76± 2.53%

milk reextracted 7 99.26± 0.49%

milk reextracted, different milk 3 99.93± 0.07%

5.7 Conclusions

We introduce three novel concepts in this work: (i) Peak topography map

(PTM), a feature representation that collectively captures the GC×GC topography,

(ii) PTM-based topography partitions, a threshold-based visualization technique for

direct cross-sample comparisons, and (iii) cross-PTM analysis technique based on a

quantitative score and topography partitions. Specifically, we address the broader

question of what aspects of two oil samples are similar, and where do they differ,

based on the molecular fossil (biomarker) topography of their GC ×GC separations.
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Our methodology provides a mathematical framework for quantitative visualization

of GC×GC at the granularity of individual peaks across target and non-target com-

pounds as well as groups of peaks connected by topographic proximity. Such multi-

scale interpretation is enabled by the combination of individual peakratio evaluation

between equivalent nodes, topography partitioning, and cross-PTM score spanning

the collective topography of GC×GC ROI. Thus the PTM method enables GC×GC

forensic interpretation across well-known target biomarkers, while including the nu-

ances of lesser-known non-target compounds clustered around the target peaks. This

allows potential discovery of hitherto unknown connections between biomarkers that

are related through topographic similarity between samples.

5.8 Tables of injections and target biomarkers

All of the samples were collected without any necessary legal/operation per-

mission or impacted endangered or protected species. However as part of the response

to the Deepwater Horizon and a request from the official response, we collected the

sample on June 21, 2010 at the Macondo well with assistance from the United States

Coast Guard. This field sample is considered one of the most important from the

Deepwater Horizon and eventually was involved in the Federal decision on the vol-

ume of oil released. Refer to [84,91] for more information on its collection and usage

in flow rate calculations. These samples were collected in areas well documented

( [67, 81]) to be heavily contaminated by the Deepwater Horizon disaster compared

to the background.
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Table 5.5: List of Thirty-four injections across thirty-one

samples from nineteen distinct sources

Injection

Number

Sample name Sample description based on ori-

gin

1,2 Macondo well oil Sampled from the Macondo well before

the Deepwater Horizon disaster, which

occurred on April 20, 2010, as part of

normal petroleum operations. It is of-

ten called the pre-spill.

3 Surface sample Oil droplet collected near the Deepwa-

ter Horizon blowout during the spill

(June 2010)

4 Macondo well oil Collected directly from the broken riser

pipe at the Macondo well 6/21/2010.

(Referred as MW-2 in Reddy et al

2011)
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Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

5 Grass blade-1 First distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.

6 Grass blade-2 Second distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.



www.manaraa.com

132

Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

7 Grass blade-3 Third distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.

8 Grass blade-4 Fourth distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.
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Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

9 Grass blade-5 Fifth distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.

10 Grass blade-6 Sixth distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.
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Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

11 Grass blade-7 Seventh distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.

12 Grass blade-8 Eighth distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.
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Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

13 Grass blade-9 Nineth distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.

14 Grass blade-10 Tenth distinct and separate sample

scraped from one blade of marsh grass

on May 30, 2010 about 200 km from the

Deepwater Horizon blowout This sam-

ple and the following were clearly from

the disaster based on tracking of sur-

face slicks to this location.

15 Eugene Island

crude

Collected from a drilling rig in the Eu-

gene Island block 330, Gulf of Mexico.



www.manaraa.com

136

Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

16 Southern

Louisiana Crude

SRM prepared by the US Environmen-

tal Protection agency (WP681). Col-

lected in the 1970s from the Gulf of

Mexico.

17 Gulf of Mexico

seep

Natural oil seep (Collected in 2006 - 560

miles SW of the Deepwater Horizon dis-

aster in the Gulf of Mexico).

18, 19, 20

(Injections

from same

sample

analyzed

consecu-

tively)

NIST SRM-1582 Standard reference material (SRM) Na-

tional Institute of Standards and Tech-

nology (NIST), likely from Monterey

Shale.

21 Monterey crude Crude oil collected off the coast of

Santa Barbara, CA.

22 Kamchatka

crude

Crude oil collected from Russia.
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Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

23 Ardjuna basin

crude

Crude oil collected off the coast of In-

donesia.

24 Exxon Valdez Collected from the Exxon Valdez cargo

after the March 1989 grounding.

25 Permean Basin Crude oil collected in West Texas.

26 Arabian light

crude

SRM prepared by the US Environmen-

tal Protection agency.

27 Kuwait export

crude

First of three cargoes spilled from the

MT Hebei Spirit (occurred 12/2007).

28 UAE - Upper

Zakum crude

Second of three cargoes from the MT

Hebei Spirit (occurred 12/2007).

29 Iranian heavy

crude

Third of three cargoes from the MT

Hebei Spirit (occurred 12/2007).

30 PetroEcuador

crude

Crude oil collected off the coast of

Ecuador.

31 Green River

shale

Crude oil produced from the Green

River Shale.

32 Texas crude Collected from south central Texas.
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Table 5.5 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

33 Nigerian crude Sample collected from Nigeria.

34 Angola Crude Sample collected from Angola.

5.9 List of hydrocarbon biomarkers labeled as targets in the manuscript

Table 5.6: List of compounds labeled in Figures 5.1(c),

5.3(c) and 5.3(d)

Injection

Number

Sample name Sample description based on ori-

gin

1 DiaC27Ba-20S 13β(H),17α(H)-20S-diacholestane

2 DiaC27Ba-20R 13β(H),17α(H)-20R-diacholestane

3 DiaC27aB-20S 13α(H),17β(H)-20S-diacholestane

4 DiaC27aB-20R 13α(H),17β(H)-20R-diacholestane

5 DiaC28Ba-20S(24X) 24X-methyl-13β(H),17α(H)-20S-

diacholestane

6 DiaC28Ba-20S(24Y) 24Y-methyl-13β(H),17α(H)-20S-

diacholestane

7 DiaC28Ba-20R(24S&R) 24S&R-methyl-13β(H),17α(H)-20R-

diacholestane
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Table 5.6 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

8 C27aBB-20R 5α(H),14β(H),17β(H)-20R-cholestane

9 DiaC29Ba-20S(24S&R) 24S&R-ethyl-13β(H),17α(H)-20S-

diacholestane

10 C27aBB-20S 5α(H),14β(H),17β(H)-20S-cholestane

11 C27aaa-20R 5α(H),14α(H),17α(H)-20R-cholestane

12 Ts 18α(H)-22,29,30-trinorneohopane

13 DiaC29Ba-20R(24S&R) 24S&R-methyl-13α(H),17β(H)-20R-

diacholestane

14 Tm 17α(H)-22,29,30-trinorhopane

15 DiaC29aB-20S(24S&R) 24S&R-ethyl-13α(H),17β(H)-20S-

diacholestane

16 DiaC29aB-20R(24S&R) 24S&R-ethyl-13α(H),17β(H)-20R-

diacholestane

17 C28aBB-20R 24-methyl-5α(H),14β(H),17β(H)-20R-

cholestane

18 C28aBB-20S Unknown ster-

ane mass 400

24-methyl-5α(H),14β(H),17β(H)-20S-

cholestane

19 (C29) Unknown sterane mass 400 (C29)
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Table 5.6 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

20 C28aaa-20R 24-methyl-5α(H),14α(H),17α(H)-20R-

cholestane

21 C29aaa-20S 24-ethyl-5α(H),14α(H),17α(H)-20S-

cholestane

22 C29aBB-20R 24-ethyl-5α(H),14β(H),17β(H)-20R-

cholestane

23 C29aBB-20S 24-ethyl-5α(H),14β(H),17β(H)-20S-

cholestane

24 NH 17α(H),21β(H)-30-norhopane

25 C29aaa-20R 24-ethyl-5α(H),14α(H),17α(H)-20R-

cholestane

26 NM 17β(H),21α(H)-30-norhopane

27 H 17α(H),21β(H)-hopane

28 M 17β(H),21α(H)-hopane

29 HH(S) 17α(H),21β(H)-22S-homohopane

30 HH(R) 17α(H),21β(H)-22R-homohopane

31 2HH(S) 17α(H),21β(H)-22S-bishomohopane

32 2HH(R) 17α(H),21β(H)-22R-bishomohopane
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Table 5.6 Continued.

Injection

Number

Sample name Sample description based on ori-

gin

33 3HH(S) 17α(H),21β(H)-22S-trishomohopane

34 3HH(R) 17α(H),21β(H)-22R-trishomohopane

35 4HH(S) 17α(H),21β(H)-22S-

tetrakishomohopane

36 4HH(R) 17α(H),21β(H)-22R-

tetrakishomohopane

37 5HH(S) 17α(H),21β(H)-22S-

pentakishomohopane

38 5HH(R) 17α(H),21β(H)-22R-

pentakishomohopane

5.10 Procedure for cross-PTM comparison and related equations

Procedure for cross-PTM comparison

� Initialization:

Start at the top left node of each PTM matrix, i.e., choose ηtest = PTMtest[1, 1]

and ηref = PTMref [1, 1].

If the nodes are equivalent, then proceed to Step 2a. If they are not equiv-

alent, then proceed to Step 2b.
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� Step 2a:

Measure peakratio between equivalent nodes.

ρ(m1 , n1 ) = max (
pref

ptest

,
ptest

pref

) (5.4)

where the peakratio is indexed by the location of the peak at the test PTM

node.

� Step 2b:

Determine the PTM node with the lower peak location in the second di-

mension, i.e., select ηmin= arg{n1,n2}min{ηtest,ηref}.

∗ Step 2b - Case 1: (ηmin = ηtest)

In this scenario, test GC ×GC ROI has a peak at [m1 , n1 ] while the

reference GC × GC has none within the (Θ1 ,Θ2 )-neighborhood of

[m1, n1].

To compensate for the missing peak in the reference sample, we insert

a new reference PTM node η̃ref = {m1 , n1 , p̃ref } preceding the current

reference node at ηref ={m2, n2, pref}.

We evaluate p̃ref as the maximum value within a (Θ1 ,Θ2 )-vicinity

of [m1, n1] for the reference GC ×GC ROI, i.e.,
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p̃ref = argmaxIref (m1 ±Θ1 , n1 ±Θ2 ) (5.5)

The peakratio is evaluated as ρ(m1 , n1 ) = max(
p̃ref
ptest

,ptest
p̃ref

) between

equivalent nodes ηtest={m1, n1, ptest} and the inserted reference PTM

node η̃ref = m1 , n1 , p̃ref . The peakratio is indexed by the location of

the existing peak at the test node.

∗ Step 2b - Case 2: (ηmin = ηref )

In this other possible scenario, reference GC ×GC ROI has a peak at

[m2 , n2 ] while the test GC × GC ROI has none within the (Θ1 ,Θ2 )-

neighborhood of [m2 , n2 ].

We insert a new test PTM node η̃test = {m1 , n1 , p̃test} where p̃test

denotes the maximum value within the (Θ1 ,Θ2 )-neighborhood of the

test GC ×GC ROI, i.e.,

p̃test = argmaxItest(m2 ±Θ1 , n2 ±Θ2 ) (5.6)

The peakratio is evaluated as ρ(m2 , n2 )= max(
pref
p̃test

, p̃test
pref

) between the

equivalent nodes ηref ={m2, n2, pref} and the inserted test PTM node

η̃test = {m2 , n2 , p̃test}.

In this case, the peakratio is indexed by the location of the existing
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peak at the reference PTM node.

� Step 3:

We threshold the peakratio ρ(m,n) indexed by the peak location at either

or both PTM nodes by a pre-selected threshold τ . Each peak (in test

sample, reference sample, or both) is classified as:

1. ”Similar” if ρ(m, n) ≤ τ , or

2. ”Dissimilar” if ρ(m, n) > τ .

� Step 4:

Increment the row index along the PTM matrix column (i.e., increment

along the second GC × GC dimension) for the PTM node that did not

have a node insertion. This reduces to three possibilities:

1. Increment both PTM nodes for Step 2a,

2. Increment test PTM node for Step 2b: Case 1, and

3. Increment ref PTM node for Step 2b: Case 2.

� Terminate and move to next PTM matrix column:

If both PTMs reach the last entry in the PTM matrix column, i.e, all

remaining nodes in each PTM matrix column are blank nodes.

5.11 Cross-PTM Score, similarity as a percentage of match

After aligning the peaks of the GC × GC images we can use any desirable

criterion to compare the two peak points at the same location. The criterion we have
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used in this method to compare the two points ptest and pref is:

ρ(ptest, pref ) = max(
ptest
pref

,
pref
ptest

) (5.7)

5.12 Peak Detection using Maxima search

As stated in the manuscript, we employ a maxima finder using gradient com-

putations to detect the peaks in a chromatogram. The key idea is to compute the

gradient of the signal along the second dimension and locate the points where the

gradient is zero with negative second derivative, indicating a maxima. Figure 5.14

demonstrates the performance of the maxima finder over different peaks, major and

minor, for the chromatogram in Figure 5.13.

The peaks in Figure 5.14 have been plotted together as an overlapped collec-

tion. The overlapped visualization is intended to highlight the presence of hundreds

of minor peaks besides the visible major peaks, and represents the same higher-

dimensional information in the GC×GC image, and therefore, should not be treated

as a collapsed GC plot. The first dimension retention times are for this box repre-

senting the biomarker region within a larger GC ×GC chromatogram. The magenta

dots at the bottom do not denote peaks but zero values. To provide resilience against

noise, several measures may be taken to select a detected peak. We selected to keep

the peaks detected by the maxima finder based on thresholding a ratio-driven mea-

sure. The metric chosen is sum of the absolute ratios of the slope to the peak width

in the direction of rise and fall, as given in Equation 5.8. For the data analysis pre-
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sented in Figure 5.3 in the manuscript, the peaks were thresholded to λ ≤ 0.01 . The

variables used in Equation S4 below are defined in Figure 5.15.

λ = | h
d1

|+ | h
d2

| (5.8)

5.12.1 Selection of the values of d1, d2 and the threshold for λ

Choice of d1 and d2 dictate the ratio λ = | s1
d1
| + | s2

d2
| , which jointly considers

the four design parameters s1, s2, d1 and d2, where s1 and s2 are dependent on

the choice of d1 and d2 and the peak maxima. Choosing too high a value for d1

and d2 can lead to erroneously counting several minor peaks as one major peak,

and too low a value can lead to regarding noise bumps as peaks. Therefore, high

values for d1 and d2 will also lower lambda and lead to higher vulnerability to noise

if the lambda threshold is small, and the possibility of lumping several small peaks

into one. Choosing too high a threshold for lambda leaves out many of the smaller

minor compounds. To avoid these scenarios, we tested a range of values of d1 and d2

across a random sample of well-detected peaks across the chromatogram for several

samples in our dataset. For simplicity, we chose d1 = d2 and s1 = s2. Based on our

empirical observations, we chose the value to be d1 = d2 = 5, and lambda threshold

to 0.001 in the cross-PTM analysis to best capture most of the topography without

vulnerability to noise, and choose lower values of the parameters to highlight more

minor peaks in Figure 5.2.2(c). For confirmation that the choice of the parameters

captured most of the peaks in the dataset, we applied the peak detection algorithm to
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every chromatogram and generated Figure 5.14 for visual confirmation that all major

peaks and considerable spread of minor peaks were detected.

Figure 5.13: GC × GC chromatogram image of the sterane (lower left) and hopane

(upper right) regions of an oil sample.The first dimension retention times are for this

box within a larger GC ×GC chromatogram.
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Figure 5.14: The peak shapes (in blue) and summit values (magenta stars on the

peaks) detected along the 186 points along 2nd dimension) for each of the 277 points

in the 1st dimension) of the GC ×GC plot in 5.13.

Figure 5.15: Peak parameters illustrated using a cosinusoidal peak.
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5.12.2 Baseline correction

The effect of column bleed, is compensated for using first-order interpolation

between the feet of each peak. Figure 5.16 below shows the original and corrected

baseline for one column within the GC ×GC image.

Figure 5.16: Original and corrected baseline for one column within the GC × GC

image. The baseline is corrected for column bleed by estimating the local column

bleed using a simple linear estimator and subtracting its effect from the original curve.

Visually speaking, this has the effect of calculating the local gradient between the feet

(estimated using close-to-zero gradient search before and after the peak maxima) of

the peak and then subtracting its effect from the original curve.
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5.13 Statistical boundaries for Cross-comparison scores for PTM and

PCA

Figure 5.17: Statistical comparison; (µ ± σ), when µ denotes the means and σ de-

notes the standard deviation of cross-PTM match between Macondo and other Gulf

of Mexico injections: Eugene Island, Southern Louisiana Crude (SLC) and Gulf of

Mexico natural seep.
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Figure 5.18: Statistical comparison; (µ ± σ), when µ denotes the means and σ de-

notes the standard deviation of cross-PCA match between Macondo and other Gulf

of Mexico injections: Eugene Island, Southern Louisiana Crude (SLC) and Gulf of

Mexico natural seep.
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Figure 5.19: Projection score of sample 21 on the two different principle components.

5.14 Applying PCA on the model dataset

In figure 5.19 we have shown the biplot of the model petroleum dataset with

two different principle components. The scores on the first and second dimensions

are 0.11138 and 0.43779, respectively. Using these scores, we are unable to perform

robust source classification using the PCA biplot itself, as most of the samples do

not separate into source-specific clusters. We have nonetheless shown the scores of

one of the outlier samples, sample #21, which belongs to the coast of Santa Barbara

region. Therefore, have performed PCA directly on the GC × GC images for a fair

comparison to the PTM method.
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5.15 Comparison between two broad analytic approaches to

environmental forensics

Table 5.7: Comparison between two broad analytic ap-

proaches to environmental forensics

Target-based analysis(Peak-

ratio analysis between well-

known analytes)

Target-agnostic analysis

(Statistical pattern recogni-

tion)

Focuses on individual nuances

of well-known target compounds,

which manifest as major peaks in

chromatograms.

Focuses primarily on the statisti-

cal properties of the multi-variate

chromatographic data.

Assign forensic interpretation

based on the relative proportions

of target biomarkers, typically

using peak ratio measurements.

Forensic diagnosis based on large-

scale empirical differentiations

between the data distribution of

specimens sampled from known

sources.

Ignores the effect of (potentially

hundreds of) non-target com-

pounds, which occur in relatively

minor proportions in the complex

mixture

Does not distinguish between tar-

get (big peaks) and non-target

compounds (minor peaks).
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Table 5.7 Continued.

Target-based analysis(Peak-

ratio analysis between well-

known analytes)

Target-agnostic analysis

(Statistical pattern recogni-

tion)

Relatively immune to retention

time variability, and robust across

different specimens analyzed un-

der diverse experimental condi-

tions.

Vulnerable to retention time

shifts which significantly shift the

relative locations of minor peaks,

and hence non-target compounds.

Robust identification of target

compounds that belong to source

fingerprint.

Agnostic of forensic signatures of

individual target compounds.

Does not necessitate large-scale

training data sets, few reliable

source specimens may suffice.

Heavily dependent on training

specimen libraries, reliably sam-

pled from known source(s).

Provides reliable source diagnosis

when the two sources exhibit dis-

tinct distributions across the ma-

jor peaks.

Provides reliable source diagnosis

when sufficient training samples

are available to generate robust

source ground truths.
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Table 5.7 Continued.

Target-based analysis(Peak-

ratio analysis between well-

known analytes)

Target-agnostic analysis

(Statistical pattern recogni-

tion)

Best-suited for direct comparison

between two or more specimens

based on their target compound

distribution.

Best suited for comparing sam-

ples with reliable ground truths

(e.g. oil samples from industrial

oil reservoirs, transformer storage

sites vs. pigment manufacturing).

Essential for scientific under-

standing of well-known com-

pounds in environmental foren-

sics.

Essential for broad statistical

distinction between well-known

sources with reliable ground

truths.

Most chemists and EPA stan-

dards follow this approach due

to higher scientific understand-

ing and reliability of dominant

compounds. Peak-ratio analy-

sis of target chemcials dominate

forensic analysis in environmental

chemistry.

Most pattern-recognition tech-

niques applied to environmental

forensics fall in this domain, due

to available pattern classification

templates based on data statis-

tics when reliable source ground

truths are present.
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CHAPTER 6
CONCLUDING REMARKS

6.1 Conclusion

In this research we worked on one-dimensional and two-dimensional petroleum

forensic signals and images and the methods to study them better. These methods

help us to learn the patterns of the petroleum forensics of miscellaneous geographical

regions and use them for better distinction against that of the other region. The foren-

sic pattern are extracted through the chromatography procedure. Chromatographic

interpretation for petroleum forensics is challenging due to:

• Lack of robust ground truths

• Chromatographic variability

• Significant correlation between neighboring sources

• No quantitative method to reconcile target-based (peak-cognizant) interpreta-

tion with (peak-agnostic) statistical techniques

6.2 Contributions

• Peak-based feature engineering: Quantitative compound-cognizant inter-

pretation for raw signal datasets.

– Target Cognizant Clustering (TCC): Determine key clusters of target an-

alytes that influence the fingerprint
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– Target Neighborhood Analysis (TNA): Local interpretation of raw signal

around a target

– Local PTM interpretation through τ -map

• Connect two disparate branches of chromatographic interpretation:

Bridge peak-level interpretation (target analysis) with statistical (chemo-metric)

interpretation through a combination of peak topography mapping, partitioning

and clustering techniques

• Quantify Sensitivity to variability: Perturbation analysis of match sensi-

tivity to peak height and location uncertainties

• Identify robust peaks across a training set: Empirical assessment of

compounds that exhibit resilience to chromatographic variability

• Localized Calibration: Calibrate raw signal locally using τ -map framework
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